Skip to main content

Integrated Approach to Algae Production for Biofuel Utilizing Robust Algal Species

  • Chapter
  • First Online:
The Science of Algal Fuels

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 25))

Abstract

Cost-effectiveness of algal biomass production for oil can be significantly improved by integrating the algal culturing with waste treatment such as commercial/agricultural wastewater treatment, carbon-dioxide/flue recovery, and production of valued by-products, such as feedstock for biogas, organic fertilizer, and proteinaceous feed for animals. This approach would require oleaginous algal strains that can out-compete a diverse array of native wild species and are least sensitive to environmental changes. Selection of algae species for biofuel robustness of species plays especially important role. A perspective of mass culturing of selectively isolated robust oleaginous algal species in wastewaters is provided here, and the challenges in growing high-end oleaginous algae in wastewater media are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

 References

  • An J-Y, Sim S-J, Lee JS, Kim BW (2003) Hydrocarbon production from secondarily treated piggery wastewater by the green alga Botryococcus braunii. J Appl Phycol 15:185-191

    Google Scholar 

  • Banerjee A, Sharma R, Chisty Y, Banerjee UC (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22(3):245–279

    Article  CAS  Google Scholar 

  • Barbosa M (2003) Microalgal photobioreactors: scale-up and optimization. PhD thesis, Wageningen University, Wageningen

    Google Scholar 

  • Benemann JR (2003) Biofixation of CO2 and greenhouse gas abatement with microalgae – technology roadmap. Prepared for the U.S. Department of Energy National Energy Technology Laboratory, No. 7010000926

    Google Scholar 

  • Boersma L, Barlow EWR (1975) Animal waste conversion systems based on thermal discharges special report# 416. Agricultural Experiment Station Oregon, State University, Corvallis

    Google Scholar 

  • Borowitzka M (1988) Fats, oils and hydrocarbons. In: Borowitzka MA, Borowitzka LJ (eds) Microalgal biotechnology. Cambridge University Press, Cambridge, pp 257–287 University, The Netherlands (2003)

    Google Scholar 

  • Borowitzka MA (1992) Algal biotechnology products and processes— matching science and economics. J Appl Phycol 4:267–279

    Article  Google Scholar 

  • Brown AC, Knights BA, Conway E (1969) Hydrocarbon content and its relationship to physiological state in the green alga Botryococcus braunii. Phytochemistry 8:543–547

    Article  CAS  Google Scholar 

  • Burlew JS (ed) (1953) Algae culture from laboratory to pilot plant. Carnegie Institute of Washington Publication No. 600, Washington, DC

    Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  CAS  Google Scholar 

  • Dahiya A, Boumans R, McInnis A (2009) Effects of light and dark cycles on algae biomass grown in open pond system for oil production. American Ecological Engineering Society, 24–26 June 2009 at Oregon State University in Corvallis, Oregon

    Google Scholar 

  • Dahiya A, Boumans R, McInnis A (2010) Algae production design for oil production project. Project report to University of Vermont Office of Technology

    Google Scholar 

  • Dayananda C, Sarada R, Kumar V (2007) Isolation and characterization of hydrocarbon producing green alga Botryococcus braunii from Indian freshwater bodies. Electron J Biotechnol 10:78–91

    Article  Google Scholar 

  • DoE (2010) National algal biofuels technology roadmap. US Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program. http://www1.eere.energy.gov/biomass/pdfs/algal_biofuels_roadmap.pdf. Accessed 30 June 2010

  • Downing JB, Bracco E, Green FB, Ku AY, Lundquist TJ, Zubieta IX, Oswald WJ (2002) Low cost reclamation using the advanced integrated wastewater pond systems technology and reverse osmosis. Water Sci Technol 45:117–125

    CAS  Google Scholar 

  • Dugan GL, Golueke CG, Oswald WJ (1972) Recycle system for poultry wastes. J Water Pollut Control Fed 44:432–444

    CAS  Google Scholar 

  • Dumrattana P, Tansakul P (2006) Effect of photoperiod on growth and hydrocarbon content of Botryococcus braunii cultured in effluent from seafood processing plant. Songklanakarin J Sci Technol 28:99–105

    Google Scholar 

  • Eyster HC, Brown TE, Tanner HA (1958) Mineral requirements for Chlorella pyrenoidosa under autotrophic and heterotrophic conditions. In: Lamb CA, Bentley OJ, Beattie JM (eds) Trace elements. Academic, New York, pp 157–191

    Google Scholar 

  • General Systems Research LLC (2011). www.GenSysResearch.com

  • Geritz SAH, Metz JAJ, Kisdi E, Mesze´NA G (1998) Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol Ecol 12:35–57

    Article  Google Scholar 

  • Gonzalez LE, Cañizares RO, Baena S (1997) Efficiency of ammonia and phosphorus removal from Colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus. Bioresour Technol 60:259–262

    Article  CAS  Google Scholar 

  • Gouveia L, Marques AE, da Silva TL, Reis A (2009) Neochloris oleabundans UTEX #1185: a suitable renewable lipid source for biofuel production. J Ind Microbiol Biotechnol 36:821–826

    Article  CAS  Google Scholar 

  • Griffiths M, Harrison S (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507

    Article  CAS  Google Scholar 

  • Hanagata N, Takeuchi T, Fukuju Y, Barnes DJ, Karube I (1992) Tolerance of microalgae to high CO2 and high temperature. Phytochemistry 31(10):3345–3348

    Article  CAS  Google Scholar 

  • Hills CB, Nakamura H (1978) Food from sunlight: planetary survival for hungry people, how to grow edible algae and establish a profitable aquaculture. World Hunger Research Project. University of the Trees Press, Boulder Creek

    Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  CAS  Google Scholar 

  • Huang B, Hong H, Chen L (1994) The physiological effects of different N-P ratios on algae in semicontinuous culture. Asian Mar Biol 11:137–142

    Google Scholar 

  • Huntley M, Redalje D (2007) CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitig Adapt Strateg Glob Change 12:573–608

    Article  Google Scholar 

  • Janssen M, Slenders P, Tramper J et al (2001) Photosynthetic efficiency of Dunaliella tertiolecta under short light/dark cycles. Enzyme Microb Technol 4–5:298–305

    Article  Google Scholar 

  • Johnson MB (2009) Microalgal biodiesel production through a novel attached culture system and conversion parameters. Master thesis, Virginia Polytechnic Institute and State University

    Google Scholar 

  • Kebede-Westhead E, Pizarro C, Mulbry WW, Wilkie AC (2003) Production and nutrient removal by periphyton grown under different loading rates of anaerobically digested flushed dairy manure. J Phycol 39:1275–1282

    Article  Google Scholar 

  • Klausmeier CA, Litchman E (2001) Algal games: the vertical distribution of phytoplankton in poorly-mixed water columns. Limnol Oceanogr 46:1998–2007

    Article  Google Scholar 

  • Kommareddy A, Anderson G (2004) Study of light requirements of photobioreactor. 2004 CSAE/ASAE North-Central Intersectional Meeting. Paper No: MB04-111

    Google Scholar 

  • Laws EA, Terry KL, Wickman J, Challup MS (1983) A. simple algal production system designed to utilize the flashing light effect. Biotechnol Bioeng 25:2319–2336

    Article  CAS  Google Scholar 

  • Liebrand CB, Ling KC (2009) Cooperative approaches for implementation of dairy manure digesters. Research report 217. United States Department of Agriculture (USDA), Washington, DC

    Google Scholar 

  • Lipman CB, Teakle LJH (1925) Azotobacter chroococcum and nitrogen fixation. Available from www.jgprupress.org

  • Lundquist TJ (2008) Production of algae in conjunction with wastewater treatment. Paper presented at the National Renewable Energy Laboratory-Air Force Office of Scientific Research joint workshop on algal oil for jet fuel production, 19–21 Feb 2008, Arlington, VA

    Google Scholar 

  • Maynard Smith J, Price G (1973) The logic of animal conflicts. Nature 246:15–18

    Article  Google Scholar 

  • Meiser A, Schmid-Staiger U, Trosch W (2004) Optimization of eicosapentaenoic acid production by Phaeodactylum tricornutum in the flat panel airlift (FPA) reactor. J Appl Phycol 16:215–225

    Article  CAS  Google Scholar 

  • Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496

    Article  CAS  Google Scholar 

  • Mouget JL, Dakhama A, Lavoie MC, De la Noüe J (1995) Algal growth enhancement by bacteria: is consumption of photosynthetic oxygen involved? FEMS Microbiol Ecol 18:35–44

    Article  CAS  Google Scholar 

  • Mulbry W, Kebede-Westhead E, Pizarro C, Sikora LJ (2005) Recycling of manure nutrients: use of algal biomass from dairy manure treatment as a slow release fertilizer. Bioresour Technol 96:451–458

    Article  CAS  Google Scholar 

  • Mulbry W, Kondrad S, Buyer J (2008) Treatment of dairy and swine manure effluents using freshwater algae: fatty acid content and composition of algal biomass at different manure loading rates. J Appl Phycol 20:1079–1085

    Article  Google Scholar 

  • Mulbry W, Kangas P, Kondrad S (2010) Toward scrubbing the bay: nutrient removal using small algal turf scrubbers on Chesapeake Bay tributaries. Ecol Eng 36:536–541

    Article  Google Scholar 

  • Mulligan CN, Gibbs BF (2003) Innovative biological treatment processes for wastewater in Canada. Water Qual Res J Can 38:243–266

    CAS  Google Scholar 

  • Myers J, Graham J-R (1971) The photosynthetic unit in chlorella measured by repetitive short flashes. Plant Physiol 48:282–286

    Article  CAS  Google Scholar 

  • Ogbonna JC, Yoshizawa H, Tanaka H (2000) Treatment of high strength organic wastewater by a mixed culture of photosynthetic microorganisms. J Appl Phycol 12:277–284

    Article  CAS  Google Scholar 

  • Oswald WJ (1990) Advanced integrated wastewater pond systems. Paper presented at the supplying water and saving the environment for six billion people 1990 ASCE convention EE Div/ASCE, 5–8 Nov 1990, San Francisco, CA

    Google Scholar 

  • Oswald WJ (2003) My sixty years in applied algology. J Appl Phycol 15:99–106

    Article  CAS  Google Scholar 

  • Oswald WJ, Gotaas HB, Ludwig HF, Lynch V (1953) Algae symbiosis in oxidation ponds: III. Photosynthetic oxygenation. Sew Ind Wastes 25:692–705

    CAS  Google Scholar 

  • Pizarro C, Mulbry W, Blersch D, Kangas P (2006) An economic assessment of algal turf scrubber technology for treatment of dairy manure effluent. Ecol Eng 26:321–327

    Article  Google Scholar 

  • Riley JG (1979) Evolutionary equilibrium strategies. J Theor Biol 76(2):109–123

    Article  CAS  Google Scholar 

  • Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112

    Article  CAS  Google Scholar 

  • Roessler PG (1988) Effects of silicon deficiency on lipid composition and metabolism in the diatom Cyclotella cryptica. J Phycol 24:394–400

    CAS  Google Scholar 

  • Schenk P, Thomas-Hall S, Stephens E, Marx U, Mussgnug J, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. BioEnergy Res 1:20–43

    Article  Google Scholar 

  • Seckbach J, Gross H, Nathan MB (1971) Growth and photosynthesis of Cyanidium caldarium cultured under pure CO2. Israel J Bot 20:84–90

    CAS  Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the U.S. Department of Energy’s aquatic species program: biodiesel from algae. National Renewable Energy Laboratory, Golden

    Book  Google Scholar 

  • Shifrin NS, Chisholm SW (1981) Phytoplankton lipids: interspecific differences and effects of nitrate, silicate and light–dark cycles. J Phycol 17:374–384

    Article  CAS  Google Scholar 

  • Simpson AJ, Zang X, Kramer R, Hatcher PG (2003) New insights on the structure of algaenan from Botryococcus braunii race A and its hexane insoluble botryals based on multidimensional NMR spectroscopy and electrospray-mass spectrometry techniques. Phytochemistry 62:783–796

    Article  CAS  Google Scholar 

  • Smith Val H (2003) Eutrophication of freshwater and coastal marine ecosystems. A global problem. ESPR – Environ Sci Pollut Res 10(2):126–139

    Google Scholar 

  • Tam NFY, Wong YS (1996) Effect of ammonia concentrations on growth of Chlorella vulgaris and nitrogen removal from media. Bioresour Technol 57:45–50

    Article  CAS  Google Scholar 

  • Tam NFY, Lau PS, Wong YS (1994) Wastewater inorganic N and P removal by immobilized Chlorella vulgaris. Water Sci Technol 30:369–374

    CAS  Google Scholar 

  • Wang B, Li Y, Wu N, Lan CQ (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79(5):707–718

    Article  CAS  Google Scholar 

  • Weyer KM, Bush DR, Darzins A, Willson BD (2009) Theoretical maximum algal oil production. BioEnergy Res. Online first [Open Source] 3:204–213

    Google Scholar 

  • Wilkie AC, Mulbry WW (2002) Recovery of dairy manure nutrients by benthic freshwater algae. Bioresour Technol 84:81–91

    Article  CAS  Google Scholar 

  • Wilkie AC, Edmundson SJ, Duncan JG (2011) Indigenous algae for local bioresource production: phycoprospecting. Energy Sustain Dev 15:365–371

    Article  Google Scholar 

  • Woertz I, Feffer A, Lundquist T, Nelson Y (2009a) Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock. J Environ Eng 135:1115–1122

    Article  CAS  Google Scholar 

  • Woertz IC, Fulton L, Lundquist TJ (2009b) Nutrient removal & greenhouse gas abatement with CO2-supplemented algal high rate ponds. Paper written for the WEFTEC annual conference, Water Environment Federation, 12–14 Oct 2009, Orlando, FL, p 13

    Google Scholar 

  • Wolf FR (1983) Botryococcus braunii an unusual hydrocarbon-producing alga. Appl Biochem Biotechnol 8:249–260

    Article  CAS  Google Scholar 

  • Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507

    Article  CAS  Google Scholar 

  • Yun Y-S, Lee Sun Bok, Jong Moon Park, Choong-Il Lee, Ji-Won Yang (1997) Carbon dioxide fixation by algal cultivation using wastewater nutrients. J Chem Technol Biotechnol 69:451–455

    Article  CAS  Google Scholar 

Download references

 Acknowledgments

Funding provided by Environmental Protection Agency (EPA), Department of Energy (via VT Sustainable Jobs Fund), NASA-EPSCoR (VT), and NSF-EPSCoR (VT) to General Systems Research LLC is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anju Dahiya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dahiya, A. (2012). Integrated Approach to Algae Production for Biofuel Utilizing Robust Algal Species. In: Gordon, R., Seckbach, J. (eds) The Science of Algal Fuels. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 25. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5110-1_5

Download citation

Publish with us

Policies and ethics