Skip to main content

Sub- and Supercritical Water-Based Processes for Microalgae to Biofuels

  • Chapter
  • First Online:
The Science of Algal Fuels

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 25))

Abstract

Among the several biomass resources available, microalgae have the potential to produce more biofuels per acre than any other source without competing with food and feed production. One of the major challenges in utilization of microalgae is its high water content, high nitrogen (protein) content, and variable biochemical composition. The conventional thermochemical conversion processes such as pyrolysis and gasification require dry biomass for production of biofuels. Sub- and supercritical water (critical point: 374 °C, 22.1 MPa) technology, which can utilize wet biomass, capitalizes on the extraordinary solvent properties of water at elevated temperature for converting microalgae to high-energy density biofuels. Here, water acts as reactant as well as reaction medium in performing hydrolysis, depolymerization, dehydration, decarboxylation, and many other chemical reactions. Subcritical water can be used as green solvent to extract valuable bioproducts from microalgae. Further, sub- and supercritical water technology can be used for liquefaction of microalgae to produce liquid biofuels and for gasification to produce gaseous fuels such as methane, syngas, and hydrogen. In sub- and supercritical water-based processes, water is kept in liquid or supercritical phase by applying pressure greater than the vapor pressure of water. Thus, latent heat required for phase change of water is avoided. The chapter explains the theory of sub- and supercritical water-based processes for biofuels applications and the present state of the technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

 References

  • Abdelmoez W, Nakahasi T et al (2007) Amino acid transformation and decomposition in saturated subcritical water conditions. Ind Eng Chem Res 46(16):5286–5294

    Article  CAS  Google Scholar 

  • Abo-Shady AM, Mohamed YA et al (1993) Chemical composition of the cell wall in some green algae species. Biol Plant 35(4):629–632

    Article  CAS  Google Scholar 

  • Antal MJ, Allen SG et al (2000) Biomass gasification in supercritical water†. Ind Eng Chem Res 39(11):4040–4053

    Article  CAS  Google Scholar 

  • Becker EW (2007) Micro-algae as a source of protein. Biotechnol Adv 25:207–210

    Article  CAS  Google Scholar 

  • Biller P, Ross AB (2011) Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresour Technol 102(1):215–225

    Article  CAS  Google Scholar 

  • Bobleter O (1994) Hydrothermal degradation of polymers derived from plants. Prog Polym Sci 19:797–841

    Article  CAS  Google Scholar 

  • Brown TM, Duan P et al (2010) Hydrothermal liquefaction and gasification of Nannochloropsis sp. Energy Fuel 24(6):3639–3646

    Article  CAS  Google Scholar 

  • Byrd AJ, Pant KK et al (2007) Hydrogen production from glucose using Ru/Al2O3 catalyst in supercritical water. Ind Eng Chem Res 46(11):3574–3579

    Article  CAS  Google Scholar 

  • Calzavara Y, Joussot-Dubien C et al (2005) Evaluation of biomass gasification in supercritical water process for hydrogen production. Energy Convers Manage 46:615–631

    Article  CAS  Google Scholar 

  • Chakinala AG, Brilman (Wim) DWF et al (2010) Catalytic and non-catalytic supercritical water gasification of microalgae and glycerol. Ind Eng Chem Res 49(3):1113–1122

    Article  CAS  Google Scholar 

  • Chen P, Min M et al (2009) Review of the biological and engineering aspects of algae to fuels approach. Int J Agric Biol Eng 2(4):1–29

    Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  CAS  Google Scholar 

  • Chornet E, Overend RP (1985) Biomass liquefaction: an overview. In: Overend RP, Milne TA, Mudge LK (eds) Fundamentals of thermochemical biomass conversion. Elsevier Applied Science, New York, pp 967–1002

    Chapter  Google Scholar 

  • Chronakis IS (2000) Biosolar proteins from aquatic algae. In: Doxastakis G, Kiosseoglou V (eds) Developments in food science, vol 41. Elsevier, Amsterdam, pp 39–75

    Google Scholar 

  • Daneshvar S, Salak F et al (2011) Application of subcritical water for conversion of macroalgae to value-added materials. Ind Eng Chem Res 51(1):77–84

    Article  Google Scholar 

  • Demirbaş A (2006) Oily products from mosses and algae via pyrolysis. Energy Sour Part A Recovery Util Environ Eff 28(10):933–940

    Google Scholar 

  • DOE, US (2010) National algal biofuels technology roadmap. U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass program

    Google Scholar 

  • Elliott DC (2008) Catalytic hydrothermal gasification of biomass. Biofuels Bioprod Biorefining 2:254–265

    Article  CAS  Google Scholar 

  • Elliott DC, Sealock LJ et al (1993) Chemical processing in high-pressure aqueous environments. 2. Development of catalysts for gasification. Ind Eng Chem Res 32(8):1542–1548

    Article  CAS  Google Scholar 

  • Franck EU (1987) Fluids at high pressures and temperatures. Pure Appl Chem 59(1):25–34

    Article  CAS  Google Scholar 

  • Golueke CG, Oswald aWJ et al (1957) Anaerobic digestion of algae. Appl Microbiol 5(1):47–55

    CAS  Google Scholar 

  • Gourdiaan F, Peferoen D (1990) Liquid fuels from biomass via a hydrothermal process. Chem Eng Sci 45:2729–2734

    Article  Google Scholar 

  • Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36:269–274

    Article  CAS  Google Scholar 

  • Greenwell HC, Laurens LML et al (2009) Placing microalgae on the biofuels priority list: a review of the technological challenges. J R Soc Interface7:1–22. rsif.royalsocietypublishing.org

    Google Scholar 

  • Gretz MR (1991) Chemical composition of the cell walls of the fresh water red alga Lemanea annulata (Batrachospermales). J Phycol 27:232–240

    Article  CAS  Google Scholar 

  • Guan Q, Savage PE et al (2012) Gasification of alga Nannochloropsis sp. in supercritical water. J Supercrit Fluids 61:139–145

    Article  CAS  Google Scholar 

  • Gunnison D, Alexander M (1975) Basis of the resistance of several algae to microbial degradation. Appl Microbiol 29(6):729–738

    CAS  Google Scholar 

  • Guo LJ, Lu YJ et al (2007) Hydrogen production by biomass gasification in supercritical water: a systematic experimental and analytical study. Catal Today 129(3–4):275–286

    Article  CAS  Google Scholar 

  • Guo Y, Wang SZ et al (2010) Review of catalytic supercritical water gasification for hydrogen production from biomass. Renew Sustain Energy Rev 14(1):334–343

    Article  CAS  Google Scholar 

  • Gupta RB, Demirbas A (2010a) Gasification of biomass to produce syngas. In: Gasoline, diesel and ethanol biofuels from grasses and plants. Cambridge University Press, New York, pp 123–139

    Chapter  Google Scholar 

  • Gupta RB, Demirbas A (2010b) Introduction. In: Gasoline, diesel and ethanol biofuels from grasses and plants. Cambridge University Press, New York, pp 1–24

    Chapter  Google Scholar 

  • Hao XH, Guo LJ et al (2003) Hydrogen production from glucose used as a model compound of biomass gasified in supercritical water. J Hydrogen Energy 28:55–64

    Article  CAS  Google Scholar 

  • Heaven S, Milledge J et al (2011) Comments on ‘anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable’. Biotechnol Adv 29(1):164–167

    Article  CAS  Google Scholar 

  • Huesemann MH, Benemann JR (2009) Biofuels from microalgae: review of products, processes and potential, with special focus on Dunaliella sp. In: Ben-Amotz JEWPA, Subba Rao DV (eds) The alga Dunaliella: biodiversity, physiology, genomics, and biotechnology, vol 14. Science Publishers, New Hampshire, pp 445–474

    Google Scholar 

  • Hui J, Youjun L et al (2010) Hydrogen production by coal gasification in supercritical water with a fluidised bed reactor. Int J Hydrogen Energy 35:7151–7160

    Article  Google Scholar 

  • John Sheehan TD, Benemann J, Roessler P (1998) A look back at the U.S. Department of Energy’s Aquatic Species Program-Biodiesel from Algae. U.S. Department of Energy’s Office of Fuels Development

    Google Scholar 

  • Jong W (2009) Sustainable hydrogen production by thermochemical biomass processing. In: Gupta RB (ed) Hydrogen fuel: production, transport and storage. CRC Press, Boca Raton, pp 185–225

    Google Scholar 

  • Kalinichev AG, Churakov SV (1999) Size and topology of molecular clusters in supercritical water: a molecular dynamics simulation. Chem Phys Lett 302:411–417

    Article  CAS  Google Scholar 

  • Kocsisová T, Juhasz J et al (2006) Hydrolysis of fatty acid esters in subcritical water. Eur J Lipid Sci Technol 108:652–658

    Article  Google Scholar 

  • Kritzer P, Dinjus E (2001) An assessment of supercritical water oxidation (SCWO): existing problems, possible solutions and new reactor concepts. Chem Eng J 83:207–214

    Article  CAS  Google Scholar 

  • Kruse A (2009) Hydrothermal biomass gasification. J Supercrit Fluids 47(3):391–399

    Article  CAS  Google Scholar 

  • Kruse A, Gawlik A (2003) Biomass conversion in water at 330–410°C and 30–50 MPa: identification of key compounds for indicating different chemical reaction pathways. Ind Eng Chem Res 42:267–269

    Article  CAS  Google Scholar 

  • Kumar S (2010) Hydrothermal treatment for biofuels: lignocellulosic biomass to bioethanol, biocrude, and biochar. PhD, Chemical Engineering, Auburn University, Auburn, 258 pp

    Google Scholar 

  • Kumar S, Gupta RB (2008) Hydrolysis of microcrystalline cellulose in subcritical and supercritical water in a continuous flow reactor. Ind Eng Chem Res 47(23):9321–9329

    Article  CAS  Google Scholar 

  • Kumar S, Gupta RB (2009) Biocrude production from switchgrass using subcritical water. Energy Fuel 23(10):5151–5159

    Article  CAS  Google Scholar 

  • Marcus Y (1999) On transport properties of hot liquid and supercritical water and their relationship to the hydrogen bonding. Fluid Phase Equilib 164:131–142

    Article  CAS  Google Scholar 

  • Matsumura Y, Minowa T et al (2005) Biomass gasification in near- and super-critical water: status and prospects. Biomass Bioenergy 29(4):269–292

    Article  CAS  Google Scholar 

  • Matsumura Y, Sasaki M et al (2006) Supercritical water treatment of biomass for energy and material recovery. Combust Sci Technol 178:509–536

    Article  CAS  Google Scholar 

  • Mendes RL (2007) Supercritical fluid extraction of active compounds from algae. In: Martinez JL (ed) Supercritical fluid extraction of nutraceuticals and bioactive compounds. CRC Press, Boca Raton, pp 189–213

    Chapter  Google Scholar 

  • Minowa T, Yokoyama S-Y et al (1995) Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction. Fuel 74:1735–1738

    Article  CAS  Google Scholar 

  • Miyoshia H, Chena D et al (2004) A novel process utilizing subcritical water to recycle soda–lime–silicate glass. J Non-Cryst Solids 337(3):280–282

    Article  Google Scholar 

  • Muthukumaraa P, Gupta RB (2000) Sodium-carbonate assisted supercritical water oxidation of chlorinated waste. Ind Eng Chem Res 39:4555–4563

    Article  Google Scholar 

  • Ni M, Leung DYC et al (2006) An overview of hydrogen production from biomass. Fuel Process Technol 87:461–472

    Article  CAS  Google Scholar 

  • Percival E, McDowell RH (1981) Algal walls – composition and biosynthesis. Plant Carbohydr Part B: 277–316

    Google Scholar 

  • Peterson AA, Vogel F et al (2008) Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. Energy Environ Sci 1:32–65

    Article  CAS  Google Scholar 

  • Phillips SD (2007) Technoeconomic analysis of a lignocellulosic biomass indirect gasification process to make ethanol via mixed alcohols synthesis. Ind Eng Chem Res 46(26):8887–8897

    Article  CAS  Google Scholar 

  • Popper ZA, Tuohy MG (2010) Beyond the green: understanding the evolutionary puzzle of plant and algal cell walls. Plant Physiol 153:373–383

    Article  CAS  Google Scholar 

  • Quevedo CO, Sonia P et al (2008) Scenedesmus sp. growth in different culture mediums for microalgal protein production. Universidad de Antioquia, Medellín, Colombia 15(1):25–31

    Google Scholar 

  • Rodríguez-Meizoso I, Jaime L et al (2010) Subcritical water extraction and characterization of bioactive compounds from Haematococcus pluvialis microalga. J Pharm Biomed Anal 51(2):456–463

    Article  Google Scholar 

  • Rogalinski T, Liu K et al (2008) Hydrolysis kinetics of biopolymers in subcritical water. J Supercrit Fluids 46:335–341

    Article  CAS  Google Scholar 

  • Savage PE (1999) Organic chemical reactions in supercritical water. Chem Rev 99:603–621

    Article  CAS  Google Scholar 

  • Sawayama S, Inoue S et al (1995) CO2 fixation and oil production through microalga. Energy Convers Manage 36:729–731

    Article  CAS  Google Scholar 

  • Schenk PM, Thomas-Hall SR et al (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43

    Article  Google Scholar 

  • Schwald W, Bobleter O (1989) Hydrothermolysis of cellulose under static and dynamic conditions at high temperatures. J Carbohydr Chem 8(4):565–578

    Article  CAS  Google Scholar 

  • Seigel BZ (1973) The chemical composition of algal cell walls. CRC Crit Rev Microbiol 3:1–26

    Article  Google Scholar 

  • Sereewatthanawut I, Prapintip S et al (2008) Extraction of protein and amino acids from deoiled rice bran by subcritical water hydrolysis. Bioresour Technol 99(3):555–561

    Article  CAS  Google Scholar 

  • Sialve B, Bernet N et al (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27(4):409–416

    Article  CAS  Google Scholar 

  • Sinag A, Kruse A et al (2003) Key compounds of the hydropyrolysis of glucose in supercritical water in the presence of K2CO3. Ind Eng Chem Res 42:3516–3521

    Article  CAS  Google Scholar 

  • Spath PL, Dayton DC (2003) Preliminary screening-technical and economic assessment of synthesis gas to fuels and chemicals with emphasis on the potential for biomass-derived syngas. Fischer-Tropsch Synthesis. Natl Renew Energy Lab (December): 90–107

    Google Scholar 

  • Stucki S, Vogel F et al (2009) Catalytic gasification of algae in supercritical water for biofuel production and carbon capture. Energy Environ Sci 2(5):535–541

    Article  CAS  Google Scholar 

  • Tester JW, Holgate HR et al (1993) Supercritical water oxidation technology – process development and fundamental research. In: Emerging technologies in hazardous waste management III. American Chemical Society, Washington, DC, pp 35–76.

    Google Scholar 

  • Venderbosch R, Ardiyanti A et al (2010) Stabilization of biomass-derived pyrolysis oils. J Chem Technol Biotechnol 85(5):674–686

    Article  CAS  Google Scholar 

  • Vergara-Fernandez A, Vargas G et al (2008) Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system. Biomass Bioenergy 32(4):338–344

    Article  CAS  Google Scholar 

  • Watanabe M, Inomata H et al (2002) Catalytic hydrogen generation from biomass (glucose and cellulose) with ZrO2 in supercritical water. Biomass Bioenergy 22:405–410

    Article  CAS  Google Scholar 

  • Wijffels RH, Barbosa J (2010) An outlook on microalgal biofuels. Science 329:796–799

    Article  CAS  Google Scholar 

  • Xu L, Brilman DWF et al (2011) Assessment of a dry and a wet route for the production of biofuels from microalgae: energy balance analysis. Bioresour Technol 102(8):5113–5122

    Article  CAS  Google Scholar 

  • Yan Q, Guo L et al (2006) Thermodynamic analysis of hydrogen production from biomass gasification in supercritical water. Energy Convers Manage 47(11–12):1515–1528

    Article  CAS  Google Scholar 

  • Yanqun Li MH, Nan W, Lan CQ, Dubois-Calero N (2008) Biofuels from microalgae. Biotechnol Prog 24(4):815–820

    Google Scholar 

  • Yung MM, Jablonski WS et al (2009) Review of catalytic conditioning of biomass-derived syngas. Energy Fuel 23(4):1874–1887

    Article  CAS  Google Scholar 

  • Zhou D, Zhang L et al (2010) Hydrothermal liquefaction of macroalgae Enteromorpha prolifera to bio-oil. Energy Fuel 24:4054–4061

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kumar, S. (2012). Sub- and Supercritical Water-Based Processes for Microalgae to Biofuels. In: Gordon, R., Seckbach, J. (eds) The Science of Algal Fuels. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 25. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5110-1_25

Download citation

Publish with us

Policies and ethics