Metabolic Pathways in Green Algae with Potential Value for Biofuel Production

Algal Fuel Metabolism
  • Venkataramanan Subramanian
  • Alexandra Dubini
  • Michael Seibert
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 25)


This chapter examines the basic metabolic pathways in algae that might be developed to produce advanced biofuels in the next 20 years as viable alternatives to currently exploited ethanol pathways used in the production of first- and second-generation biofuels.


Phosphatidic Acid Mevalonate Pathway Dark Fermentation Dimethylallyl Diphosphate Advanced Biofuel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank colleagues in the Photobiology Group at NREL for a stimulating research environment, which led to our opportunity to write this chapter. This work was supported by the Computational Biology Program, Office of Biological and Environmental Research, US Department of Energy (MS), and by the NREL LDRD program.


  1. Aarts MG, Keijzer CJ, Stiekema WJ, Pereira A (1995) Molecular characterization of the CER1 gene of arabidopsis involved in epicuticular wax biosynthesis and pollen fertility. Plant Cell 7:2115–2127Google Scholar
  2. Achitouv E, Metzger P, Rager MN, Largeau C (2004) C31–C34 methylated squalenes from a Bolivian strain of Botryococcus braunii. Phytochemistry 65:3159–3165CrossRefGoogle Scholar
  3. Arigoni D, Sagner S, Latzel C, Eisenreich W, Bacher A, Zenk MH (1997) Terpenoid biosynthesis from 1-deoxy-d-xylulose in higher plants by intramolecular skeletal rearrangement. Proc Natl Acad Sci USA 94:10600–10605CrossRefGoogle Scholar
  4. Atteia A, van Lis R, Gelius-Dietrich G, Adrait A, Garin J, Joyard J, Rolland N, Martin W (2006) Pyruvate formate-lyase and a novel route of eukaryotic ATP synthesis in Chlamydomonas mitochondria. J Biol Chem 281:9909–9918CrossRefGoogle Scholar
  5. Buckingham JC (ed) (1998) Dictionary of natural products. Chapman & Hall, London, Version 6.1Google Scholar
  6. Catalanotti C, Dubini A, Subramanian V, Yang W, Magneschi L, Mus F, Seibert M, Posewitz M, Grossman AR (2012) Altered fermentative metabolism in Chlamydomonas reinhardtii mutants lacking pyruvate formate lyase and both pyruvate formate lyase and alcohol dehydrogenase. Plant Cell 24:1–16CrossRefGoogle Scholar
  7. Cheesbrough TM, Kolattukudy PE (1984) Alkane biosynthesis by decarbonylation of aldehydes catalyzed by a particulate preparation from Pisum sativum. Proc Natl Acad Sci USA 81:6613–6617CrossRefGoogle Scholar
  8. Chen M, Zhao L, Sun YL, Cui SX, Zhang LF, Yang B, Wang J, Kuang TY, Huang F (2010) Proteomic analysis of hydrogen photoproduction in sulfur-deprived Chlamydomonas cells. J Proteome Res 9:3854–3866CrossRefGoogle Scholar
  9. Dahlqvist A, Stahl U, Lenman M, Banas A, Lee M, Sandager L, Ronne H, Stymne S (2000) Phospholipid:diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proc Natl Acad Sci USA 97:6487–6492CrossRefGoogle Scholar
  10. Dennis MW, Kolattukudy PE (1991) Alkane biosynthesis by decarbonylation of aldehyde catalyzed by a microsomal preparation from Botryococcus braunii. Arch Biochem Biophys 287:268–275CrossRefGoogle Scholar
  11. Disch A, Schwender J, Muller C, Lichtenthaler HK, Rohmer M (1998) Distribution of the mevalonate and glyceraldehyde phosphate/pyruvate pathways for isoprenoid biosynthesis in unicellular algae and the cyanobacterium Synechocystis PCC 6714. Biochem J 333:381–388Google Scholar
  12. Doebbe A, Keck M, La Russa M, Mussgnug JH, Hankamer B, Tekce E, Niehaus K, Kruse O (2010) The interplay of proton, electron, and metabolite supply for photosynthetic H2 production in Chlamydomonas reinhardtii. J Biol Chem 285:30247–30260CrossRefGoogle Scholar
  13. Dubini A, Mus F, Seibert M, Grossman AR, Posewitz MC (2009) Flexibility in anaerobic metabolism as revealed in a mutant of Chlamydomonas reinhardtii lacking hydrogenase activity. J Biol Chem 284:7201–7213CrossRefGoogle Scholar
  14. Dyall SD, Yan W, Delgadillo-Correa MG, Lunceford A, Loo JA, Clarke CF, Johnson PJ (2004) Non-mitochondrial complex I proteins in a hydrogenosomal oxidoreductase complex. Nature 431:1103–1107CrossRefGoogle Scholar
  15. Gaffron H, Rubin J (1942) Fermentative and photochemical production of hydrogen in algae. J Gen Physiol 26:219–240CrossRefGoogle Scholar
  16. Gfeller RP, Gibbs M (1984) Fermentative metabolism of Chlamydomonas reinhardtii: I. Analysis of fermentative products from starch in dark and light. Plant Physiol 75:212–218CrossRefGoogle Scholar
  17. Gfeller RP, Gibbs M (1985) Fermentative metabolism of Chlamydomonas reinhardtii: II. Role of plastoquinone. Plant Physiol 77:509–511CrossRefGoogle Scholar
  18. Ghirardi M, Kosourov S, Maness PC, Smolinski S, Seibert M (2010) Algal hydrogen production. In: Flickinger MC (ed) Wiley encyclopedia of biotechnology: bioprocess, bioseparation, and cell technology. Wiley, Hoboken, pp 184–189Google Scholar
  19. Gibbs M, Gfeller RP, Chen C (1986) Fermentative metabolism of Chlamydomonas reinhardtii: III. Photoassimilation of acetate. Plant Physiol 82:160–166CrossRefGoogle Scholar
  20. Grossman AR, Catalanotti C, Yang W, Dubini A, Magneschi L, Subramanian V, Posewitz MC, Seibert M (2011) Multiple facets of anoxic metabolism and hydrogen production in the unicellular green alga Chlamydomonas reinhardtii. New Phytol 190:279–288CrossRefGoogle Scholar
  21. Guckert JB, Cooksey KE (1990) Triacylglyceride accumulation and fatty acid profile changes in Chlorella (Chlorophyta) during high-pH induced cell cycle inhibition. J Phycol 26:72–79CrossRefGoogle Scholar
  22. Harwood JL (1998) Membrane lipids in algae. In: Siegenthaler A, Murata N (eds) Lipids in photosynthesis: structure, function and genetics. Kluwer Academic Publishers, Dordrecht, pp 53–64Google Scholar
  23. Hemschemeier A, Happe T (2005) The exceptional photofermentative hydrogen metabolism of the green alga Chlamydomonas reinhardtii. Biochem Soc Trans 33:39–41CrossRefGoogle Scholar
  24. Hemschemeier A, Jacobs J, Happe T (2008) Biochemical and physiological characterization of the pyruvate formate-lyase Pfl1 of Chlamydomonas reinhardtii, a typically bacterial enzyme in a eukaryotic alga. Eukaryot Cell 7:518–526CrossRefGoogle Scholar
  25. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639CrossRefGoogle Scholar
  26. Huang Z, Poulter CD (1989) Tetramethylsqualene, a triterpene from Botryococcus braunii var. showa. Phytochemistry 28:1467–1470CrossRefGoogle Scholar
  27. Hull A, Golubkov I, Kronberg B, Marandzheva T, van Stam J (2006) An alternative fuel for spark ignition engines. Int J Engine Res 7:203–214CrossRefGoogle Scholar
  28. Jaworski JG, Clough RC, Barnum SR (1989) A cerulenin insensitive short chain 3-Ketoacyl-Acyl carrier protein synthase in Spinacia oleracea leaves. Plant Physiol 90:41–44CrossRefGoogle Scholar
  29. Jorquera O, Kiperstok A, Sales EA, Embirucu M, Ghirardi ML (2010) Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour Technol 101:1406–1413CrossRefGoogle Scholar
  30. Kim D, Filtz MR, Proteau PJ (2004) The methylerythritol phosphate pathway contributes to carotenoid but not phytol biosynthesis in Euglena gracilis. J Nat Prod 67:1067–1069CrossRefGoogle Scholar
  31. Klein-Marcuschamer D, Ajikumar PK, Stephanopoulos G (2007) Engineering microbial cell factories for biosynthesis of isoprenoid molecules: beyond lycopene. Trends Biotechnol 25:417–424CrossRefGoogle Scholar
  32. Kosourov SN, Seibert M (2009) Hydrogen photoproduction by nutrient-deprived Chlamydomonas reinhardtii cells immobilized within thin alginate films under aerobic and anaerobic conditions. Biotechnol Bioeng 102:50–58CrossRefGoogle Scholar
  33. Kreuzberg K (1984) Starch fermentation via a formate producing pathway in Chlamydomonas reinhardtii, Chlorogonium elongatum and Chlorella fusca. Physiol Plant 61:87–94CrossRefGoogle Scholar
  34. Lange BM, Rujan T, Martin W, Croteau R (2000) Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. Proc Natl Acad Sci USA 97:13172–13177CrossRefGoogle Scholar
  35. Lichtenthaler HK (1999) The 1-Deoxy-d-Xylulose-5-Phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 50:47–65CrossRefGoogle Scholar
  36. Lichtenthaler HK, Schwender J, Disch A, Rohmer M (1997) Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway. FEBS Lett 400:271–274CrossRefGoogle Scholar
  37. Lindberg P, Park S, Melis A (2010) Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab Eng 12:70–79CrossRefGoogle Scholar
  38. Liu J, Huang J, Sun Z, Zhong Y, Jiang Y, Chen F (2011) Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: assessment of algal oils for biodiesel production. Bioresour Technol 102:106–110CrossRefGoogle Scholar
  39. Magneschi L, Catalanotti C, Subramanian V, Dubini A, Yang W, Mus F, Posewitz MC, Seibert M, Perata P, Grossman AR (2012) A mutant in the ADH1 gene of Chlamydomonas reinhardtii elicits metabolic restructuring during anaerobiosis. Plant Physiol 158:1293–1305CrossRefGoogle Scholar
  40. Matthew T, Zhou W, Rupprecht J, Lim L, Thomas-Hall SR, Doebbe A, Kruse O, Hankamer B, Marx UC, Smith SM, Schenk PM (2009) The metabolome of Chlamydomonas reinhardtii following induction of anaerobic H2 production by sulfur depletion. J Biol Chem 284:23415–23425CrossRefGoogle Scholar
  41. Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122:127–136CrossRefGoogle Scholar
  42. Merchant SS, Kropat J, Liu B, Shaw J, Warakanont J (2011) TAG, You’re it! Chlamydomonas as a reference organism for understanding algal triacylglycerol accumulation. Curr Opin Biotechnol 23:1–12Google Scholar
  43. Merzlyak MN, Chivkunova OB, Gorelova OA, Reshetnikova IV, Solovchenko AE, Khozin-Goldberg I, Cohen Z (2007) Effect of nitrogen starvation on optical properties, pigments, and arachidonic acid content of the unicellular green alga Parietochloris incisa (trebouxiophyceae, Chlorophyta). J Phycol 43:833–843CrossRefGoogle Scholar
  44. Metzger P, Casadevall E (1987) Lycopadiene, a tetraterpenoid hydrocarbon from new strains of the green alga Botryococcus braunii. Tetrahedron Lett 28:3931–3934CrossRefGoogle Scholar
  45. Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496CrossRefGoogle Scholar
  46. Metzger P, Berkaloff C, Coute A, Casadevall E (1985a) Alkadiene- and botryococcene-producing races of wild strains of Botryococcus braunii. Phytochemistry 24:2305–2312CrossRefGoogle Scholar
  47. Metzger P, Casadevall E, Pouet M-J, Pouet Y (1985b) Structures of some botryococcenes: branched hydrocarbons from the B race of the green alga Botryococcus braunii. Phytochemistry 24:2995–3002CrossRefGoogle Scholar
  48. Metzger P, Allard B, Casadevall E, Berkaloff C, Coute A (1990) Structure and chemistry of a new chemical race of Botryococcus braunii that produces lycopadiene, a tetraterpenoid hydrocarbon. J Phycol 26:258–266CrossRefGoogle Scholar
  49. Metzger P, Rager MN, Largeau C (2002) Botryolins A and B, two tetramethylsqualene triethers from the green microalga Botryococcus braunii. Phytochemistry 59:839–843CrossRefGoogle Scholar
  50. Metzger P, Rager MN, Sellier N, Largeau C (2003) Lycopanerols I-L, four new tetraterpenoid ethers from Botryococcus braunii. J Nat Prod 66:772–778CrossRefGoogle Scholar
  51. Meuser JE, Ananyev G, Wittig LE, Kosourov S, Ghirardi ML, Seibert M, Dismukes GC, Posewitz MC (2009) Phenotypic diversity of hydrogen production in chlorophycean algae reflects distinct anaerobic metabolisms. J Biotechnol 142:21–30CrossRefGoogle Scholar
  52. Meuser JE, D’Adamo S, Jinkerson RE, Mus F, Yang W, Ghirardi ML, Seibert M, Grossman AR, Posewitz MC (2012) Genetic disruption of both Chlamydomonas reinhardtii [FeFe]-hydrogenases: Insight into the role of HYDA2 in H(2) production. Biochem Biophys Res Commun 417:704–709CrossRefGoogle Scholar
  53. Miura Y, Yagi K, Shoga M, Miyamoto K (1982) Hydrogen production by a green alga, Chlamydomonas reinhardtii, in an alternating light/dark cycle. Biotechnol Bioeng 24:1555–1563CrossRefGoogle Scholar
  54. Mus F, Dubini A, Seibert M, Posewitz MC, Grossman AR (2007) Anaerobic acclimation in Chlamydomonas reinhardtii: anoxic gene expression, hydrogenase induction, and metabolic pathways. J Biol Chem 282:25475–25486CrossRefGoogle Scholar
  55. Nguyen HM, Baudet M, Cuiné S, Adriano JM, Barthe D, Billon E, Bruley C, Beisson F, Peltier G, Ferro M, Li-Beisson Y (2011) Proteomic profiling of oil bodies isolated from the unicellular green microalga Chlamydomonas reinhardtii: with focus on proteins involved in lipid metabolism. Proteomics 11:4266–4273CrossRefGoogle Scholar
  56. Oh SH, Han JG, Kim Y, Ha JH, Kim SS, Jeong MH, Jeong HS, Kim NY, Cho JS, Yoon WB, Lee SY, Kang do H, Lee HY (2009) Lipid production in Porphyridium cruentum grown under different culture conditions. J Biosci Bioeng 108:429–434CrossRefGoogle Scholar
  57. Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957–970Google Scholar
  58. Ohta S, Miyamoto K, Miura Y (1987) Hydrogen evolution as a consumption mode of reducing equivalents in green algal fermentation. Plant Physiol 83:1022–1026CrossRefGoogle Scholar
  59. Ota M, Kato Y, Watanabe M, Sato Y, Smith RL Jr, Rosello-Sastre R, Posten C, Inomata H (2011) Effects of nitrate and oxygen on photoautotrophic lipid production from Chlorococcum littorale. Bioresour Technol 102:3286–3292CrossRefGoogle Scholar
  60. Philipps G, Krawietz D, Hemschemeier A, Happe T (2011) A Pyruvate Formate Lyase (PFL1) deficient Chlamydomonas reinhardtii strain provides evidence for a link between fermentation and hydrogen evolution in green algae. Plant J 66(2):330–340CrossRefGoogle Scholar
  61. Pienkos PT, Darzins A (2009) The promise and challenges of microalgal-derived biofuels. Biofuels Bioprod Biorefining 3:431–440CrossRefGoogle Scholar
  62. Pohl P (1979) Dichotic listening in a child recovering from acquired aphasia. Brain Lang 8:372–379CrossRefGoogle Scholar
  63. Quinn JC, Turner CW, Bradley TH (2012) Scale-up of flat plate photobioreactors considering diffuse and direct light characteristics. Biotechnol Bioeng 109:363–370CrossRefGoogle Scholar
  64. Rabbani S, Beyer P, Lintig J, Hugueney P, Kleinig H (1998) Induced beta-carotene synthesis driven by triacylglycerol deposition in the unicellular alga Dunaliella bardawil. Plant Physiol 116:1239–1248CrossRefGoogle Scholar
  65. Radakowits R, Eduafo PM, Posewitz MC (2010) Genetic engineering of fatty acid chain length in Phaeodactylum tricornutum. Metab Eng 13:89–95CrossRefGoogle Scholar
  66. Rager MN, Metzger P (2000) Six novel tetraterpenoid ethers, lycopanerols B-G, and some other constituents from the green microalga Botryococcus braunii. Phytochemistry 54:427–437CrossRefGoogle Scholar
  67. Roessler PG (1988) Changes in the activities of various lipid and carbohydrate biosynthetic enzymes in the diatom Cyclotella cryptica in response to silicon deficiency. Arch Biochem Biophys 267:521–528CrossRefGoogle Scholar
  68. Saint-Amans S, Girbal L, Andrade J, Ahrens K, Soucaille P (2001) Regulation of carbon and electron flow in Clostridium butyricum VPI 3266 grown on glucose-glycerol mixtures. J Bacteriol 183:1748–1754CrossRefGoogle Scholar
  69. Sato Y, Ito Y, Okada S, Murakami K, Abe H (2003) Biosynthesis of the triterpenoids, botryococcenes and tetramethylsqualene in the B race of Botryococcus braunii via the non-mevalonate pathway. Tetrahedron Lett 44:7035–7037CrossRefGoogle Scholar
  70. Schirmer A, Rude MA, Li X, Popova E, del Cardayre SB (2010) Microbial biosynthesis of alkanes. Science 329:559–562CrossRefGoogle Scholar
  71. Schwender J, Zeidler J, Groner R, Muller C, Focke M, Braun S, Lichtenthaler FW, Lichtenthaler HK (1997) Incorporation of 1-deoxy-d-xylulose into isoprene and phytol by higher plants and algae. FEBS Lett 414:129–134CrossRefGoogle Scholar
  72. Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the US Department of Energy’s Aquatic Species Program – biodiesel from algae. National Renewable Energy Laboratory, Golden, 328CrossRefGoogle Scholar
  73. Siaut M, Cuine S, Cagnon C, Fessler B, Nguyen M, Carrier P, Beyly A, Beisson F, Triantaphylides C, Li-Beisson Y, Peltier G (2011) Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol 11:7CrossRefGoogle Scholar
  74. Stephenson AL, Kazamia E, Dennis JS, Howe CJ, Scott SA, Smith AG (2010) Life-cycle assessment of potential algal biodiesel production in the United Kingdom: a comparison of raceways and air-lift tubular bioreactors. Energy Fuels 24:4062–4077CrossRefGoogle Scholar
  75. Suen Y, Hubbard JS, Holzer G, Tornabene TG (1987) Total lipid production of the green alga Nannochloropsis sp. QII under different nitrogen regimes. J Phycol 23:289–296CrossRefGoogle Scholar
  76. Terashima M, Specht M, Naumann B, Hippler M (2010) Characterizing the anaerobic response of Chlamydomonas reinhardtii by quantitative proteomics. Mol Cell Proteomics 9:1514–1532CrossRefGoogle Scholar
  77. Tornabene TG, Holzer G, Lien S, Burris N (1983) Lipid composition of the nitrogen starved green alga Neochloris oleoabundans. Enzyme Microb Technol 5:435–440CrossRefGoogle Scholar
  78. Wada H, Murata N (1998) Membrane lipids in cyanobacteria. In: Siegenthaler PA, Murata N (eds) Lipids in photosynthesis: structure, function and genetics. Kluwer Academic Publishers, Dordrecht, pp 65–81Google Scholar
  79. Wake LV, Hillen LW (1980) Study of a “bloom” of the oil-rich alga Botryococcus braunii in the Darwin river reservoir. Biotechnol Bioeng 22:1637–1656CrossRefGoogle Scholar
  80. Wang ZT, Ullrich N, Joo S, Waffenschmidt S, Goodenough U (2009) Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryot Cell 8:1856–1868CrossRefGoogle Scholar
  81. Wang H, Alvarez S, Hicks LM (2012) Comprehensive comparison of iTRAQ and label-free LC-based quantitative proteomics approaches using two Chlamydomonas reinhardtii strains of interest for biofuels engineering. J Proteome Res 11:487–501CrossRefGoogle Scholar
  82. Weyer KM, Bush DR, Darzins A, Willson BD (2010) Theoretical maximum algal oil production. Bioenerg Res 3:204–213CrossRefGoogle Scholar
  83. Withers ST, Keasling JD (2007) Biosynthesis and engineering of isoprenoid small molecules. Appl Microbiol Biotechnol 73:980–990CrossRefGoogle Scholar
  84. Work VH, Radakovits R, Jinkerson RE, Meuser JE, Elliott LG, Vinyard DJ, Laurens LM, Dismukes GC, Posewitz MC (2010) Increased lipid accumulation in the Chlamydomonas reinhardtii sta7-10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains. Eukaryot Cell 9:1251–1261CrossRefGoogle Scholar
  85. Yang J, Xu M, Zhang X, Hu Q, Sommerfeld M, Chen Y (2011) Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresour Technol 102:159–165CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Venkataramanan Subramanian
    • 1
    • 2
  • Alexandra Dubini
    • 1
  • Michael Seibert
    • 1
    • 2
  1. 1.National Renewable Energy LaboratoryGoldenUSA
  2. 2.Colorado School of MinesGoldenUSA

Personalised recommendations