Skip to main content

Part of the book series: RILEM State-of-the-Art Reports ((RILEM State Art Reports,volume 9))

Abstract

This chapter focuses on permanent deformation, which is at the origin of pavement rutting. First experimental laboratory tools and associated analyses related to permanent deformations are presented. It is either material tests, that can be homogeneous or giving a simple empirical characteristic, or non-homogeneous Structural/Specimen tests.

Then, investigations made, by Working Group 3 (WG3) “Mechanical Tests for Bituminous Materials” of the RILEM 206-ATB, are presented. These investigations consider only wheel Tracking Tester (WTT) devices used to evaluate the rutting performance of bituminous mixtures. A first study considers three different bituminous layer systems made with pure bitumen and currently used in road construction. A surprising obtained result is the very poor performance obtained on WTT for one system, while very good rutting resistance is observed on the road.

A second study is performed in order to evaluate the reproducibility of the French Wheel Tracking Test (FWTT) on a mix made with Polymer Modified Bitumen (PmB). For this type of mixture, some peculiar problems had been reported, such as heating of the sample due to friction and sticking of the binder to the wheel. Two procedures, called anti-overheating and anti-sticking procedures, have been proposed by the group in order to improve the reproducibility of the wheel tracking test. Causes of scattering are discussed. Differences between the tires used during this RRT as a possible origin of scattering are discussed, as well as temperature increase and over-compaction of specimens.

The last section presents modeling and simulation using Finite Elements Method performed by the RILEM group. The aim is to build numerical framework based on finite element (FE) simulations for rutting prediction of asphaltic layers. Before performing permanent (viscoplastic) deformations simulation, the work first concentrates on simulating the reversible viscoelastic stresses and strains during wheel tracking tests. The linear viscoelastic (LVE) mixture behavior is modeled by a generalized Kelvin-Voigt or generalized Maxwell model, with fixed and given parameters obtained from the continuum spectrum model 2S2P1D. Both generalized Kelvin-Voigt and Maxwell models, that are equivalent, are presented as well as their calibration. Then some FE simulations are described and their results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. AASHTO T 314–02: Standard method of test for determining the fracture properties of asphalt binder in direct tension (DT). American Association of State Highway and Transportation Officials, AASHTO, Washington DC, 1 Jan 2007

    Google Scholar 

  2. Airey, G., Rahimzadeh, B., Collop, A.: Viscoelastic linearity limits for bituminous materials. In: 6th International RILEM Symposium on Performance Testing and Evaluation of Bituminous Materials, pp. 331–338, Zurich (2003)

    Google Scholar 

  3. Alavi, S.H., Monismith, C.L.: Time and temperature dependant properties of asphalt concrete mixtures tested as hollow cylinders and subjected to dynamic axial and shear loads. J. Assoc. Asphalt Pavement Technol. 63, 152–181 (1994)

    Google Scholar 

  4. Alavi, S.H.: Viscoelastic and permanent deformation characteristics of asphalt-aggregate mixes tested as hollow cylinders and subjected to dynamic axial and shear loads. Ph.D. thesis, University of California at Berkeley, USA (1992)

    Google Scholar 

  5. American Society for Testing and Materials (ASTM): Standard test method for ductility of bituminous materials. D113-99, ASTM, Philadelphia, USA, 1 Nov 1999

    Google Scholar 

  6. Anderson, D.A., Le Hir, Y.M., Planche, J.-P., Martin, D.: Zero Shear Viscosity of Asphalt Binders”, Transportation Research Record Nr. 1810, pp. 54–62 (2002)

    Google Scholar 

  7. Aschenbrener, T.: Evaluation of the Hamburg Wheel-Tracking device to predict Moisture damage in hot-mix asphalt. Transportation Research Record No. 1492, Transportation Research Board, pp. 193–201, Washington, DC (1995)

    Google Scholar 

  8. Aussédat, G.: L’essai de fluage dynamique dans la formulation des enrobés et le dimensionnement des chaussées. Bulletin LPC Spécial, Bitumes et enrobés bitumineux, 5 Dec 1977

    Google Scholar 

  9. Azibert, C., Célard, B., Lombardi, B., Caillot, P.: Machine d’essai de fluage dynamique pour les enrobés bitumineux. Revue Générale des Routes et Aérodromes 522, 42–50 (1976)

    Google Scholar 

  10. Bahia, H.U., Hanson, D.I., Zeng, M., Zhai, H., Khatri, A., Anderson, R.M.: Characterization of modified asphalt binders in Superpave mix design. NCHRP REPORT 459, TRB – National Research Council National Academy Press, Washington, DC (2001)

    Google Scholar 

  11. Baillargeon, G., Rainville, J.: Introduction à la statistique appliquée: Une approche multidisciplinaire, Les éditions SMG, Trois-Rivi`res, p. 490 (1976)

    Google Scholar 

  12. Biligiri, K., Kaloush, K., Mamlouk, M., Witczak, M.: Rational modelling of tertiary flow for asphalt mixtures. Transp. Res. Rec. J. Transport. Res. Board 2001, 63–72 (2007)

    Article  Google Scholar 

  13. BitVal: Analysis of available data for validation of bitumen tests. Report on phase 1 of BitVal Project, Forum of European National Highway Research Laboratories, FEHRL, Brussels (2006)

    Google Scholar 

  14. Blanc, M.: Etude expérimentale et modélisation du comportement des sols avec rotation d’axes principaux de contraintes. Ph.D. thesis, ENTPE, University of Lyon (2011)

    Google Scholar 

  15. Bodin, D., Grenfell, J.R.A., Collop, A.C.: Comparison of small and large scale wheel-tracking devices. Road Mater. Pavement Des. Special Edition, ICAP 10, 295–325 (2009)

    Article  Google Scholar 

  16. Bolk, H.J.N.A., Van De Loo, P.J.: The Creep test: a routine method for the design of stable mixes. In: Proceedings of Eurobitume Seminar on the Challenge of the Future for Asphalt Roads, pp. 121–127, London (1978)

    Google Scholar 

  17. Boltzmann, L.: Zur Theorie der elastischen Nachwirkung. Pogg. Ann. Phys. 7, 624–654 (1876)

    Google Scholar 

  18. Brosseaud, Y., Hieunaux, R.: Etude de sensibilité aux déformations permanentes de bétons bitumineux européens et japonais par l’orniéréeur LPC. In: Proceedings of 5th International RILEM Symposium MTBM97 in Lyon, ISBN 90-5410-876-2, 624 pp, Balkema (1997)

    Google Scholar 

  19. Brown, S.F., Snaith, M.S.: The permanent deformation characteristics of a dense bitumen macadam subjected to repeated loading. J. Assoc. Asphalt Paving Technol. 43, 224–252 (1974)

    Google Scholar 

  20. Brown, S.F.: Laboratory testing for use in the prediction of rutting in asphalt pavements. Transportation Research Record, No. 616, Transportation Research Board, pp. 22–27, Washington, DC (1976)

    Google Scholar 

  21. Brown, S.F.: Material characteristics for analytical pavement design. In: Pell, P.S. (ed.) Developments in Highway Pavement Engineering-1. Applied Science Publishers Ltd., London (1978)

    Google Scholar 

  22. Brown, S.F., Austin, G., Overy, R.: An instrumented triaxial cell for cyclic loading of clay. ASTM Geotech. Test, J.3 4, 145–152 (1980)

    Article  Google Scholar 

  23. Brown, S.F., Cooper, K.E., Pooley, G.R.: Mechanical properties of bituminous materials for pavement design. In: Proceedings of Eurobitume Symposium in Cannes, pp. 143–147, France (1981)

    Google Scholar 

  24. BS 598–110:1998: Sampling and examination of bituminous mixtures for roads and other paved areas – Part 110: Methods of test for the determination of wheel-tracking rate and depth, BSI, ISBN 0580282104, p. 14 (1998)

    Google Scholar 

  25. BS 598–111:1995: Sampling and examination of bituminous mixtures for roads and other paved areas – Part 111: Method for determination of resistance to permanent deformation of bituminous mixtures subject to unconfined uniaxial loading (1995)

    Google Scholar 

  26. BS DD 213:1993: Method for determination of the indirect tensile stiffness modulus of bituminous mixtures. Draft for Development (1993)

    Google Scholar 

  27. BS EN 12697–22:2003: Bituminous mixtures – Test methods for hot mix asphalt – Part 22: Wheel tracking (2003)

    Google Scholar 

  28. BS EN 12697–26:2004: ‘Bituminous mixtures – Test methods for hot mix asphalt – Part 26: Stiffness (2004)

    Google Scholar 

  29. BS EN 13589: 2003: Bitumen and bituminous binders – Determination of the tensile properties of modified bitumen by the force ductility method (2003)

    Google Scholar 

  30. BS EN 1426:2007: Bitumen and bituminous binders – Determination of needle penetration (2007)

    Google Scholar 

  31. BS EN 1427:2007 BS 2000–58:2007: Bitumen and bituminous binders – Determination of the softening point – Ring and Ball method, BSI, ISBN 9780580507762, p. 18 (2007)

    Google Scholar 

  32. BS EN12697-25:2005: Bituminous mixtures – Test methods for hot mix asphalt – Part 25: Cyclic compression test (2005)

    Google Scholar 

  33. Carswell, J., Green, P.J.: Prediction of Rutting Resistance in Hot Rolled Asphalt Using Rheological Parameters. The Asphalt Year Book (2000), Institute of Asphalt Technology, p. 27–36 (2000)

    Google Scholar 

  34. Carswell, J., Moglia, O.: Assessment of the pulsed creep test to predict the rutting performance of asphalt mixtures. Euro. Roads Rev. Special Issue, RGRA 1, 64–68 (2003)

    Google Scholar 

  35. Célard, B.: Esso road design technology. In: Proceedings of the 4th International Conference on the Structural Design of Asphalt Pavements, Ann Arbor (1977)

    Google Scholar 

  36. Chailleux, E., de La Roche, C., Piau, J.M.: Modeling of complex modulus of bituminous mixtures measured in tension/compression to estimate secant modulus in indirect tensile test. Mater. Struct. 44(3), 641–657 (2011). doi:doi:10.1617/s11527-010-9655-z

    Google Scholar 

  37. Chan, F.W.K.: Permanent deformation resistance of granular layers in pavements. Ph.D. thesis, University of Nottingham, UK (1990)

    Google Scholar 

  38. Cheung, C.Y.: Mechanical behaviour of bitumens and bituminous mixes. Ph.D. thesis, University of Cambridge (1995)

    Google Scholar 

  39. Christensen, D.W., Pellinen, T., Bonaquist, R.F.: Hirsch models for estimating the modulus of asphalt concrete. J. Assoc. Asphalt Paving Technol. 72, 559–593 (2003)

    Google Scholar 

  40. Collins, R., Shami, H., Lai, J.S.: Use of Georgia loaded wheel tester to evaluate rutting of asphalt samples prepared by Superpave gyratory compactor. Transport. Res. Rec. 1545, 161–168 (1996)

    Article  Google Scholar 

  41. Collop, A.C., Khanzada, S.: Permanent deformation behaviour of idealised bituminous mixtures. In: Proceedings of 3rd European Symposium on Performance and Durability of Bituminous Materials and Hydraulic Stabilised Composites, pp. 47–58, Leeds, UK (1999)

    Google Scholar 

  42. Collop, A.C., Airey, G.D., Khanzada, S.: Creep testing of bitumen using the dynamic shear rheometer. J. Pavement Eng. 3(2), 107–116 (2002)

    Article  Google Scholar 

  43. Cooley L.A., Kandhal, P.S., Buchanan, M.S., Fee, F., Epps, A.: Loaded wheel testers in the United States- State of the Practice. NCAT Report 00–04, July 2000, Transportation Research E-Circular No. E-C016, p. 18 (2000)

    Google Scholar 

  44. Crockford, W.W.: Role of principle-plane rotation in flexible pavement deformation. J. Transport. Eng. ASCE 119, 124–141 (1993)

    Article  Google Scholar 

  45. D’Angelo J.R., Dongre R.: Development of a performance-based binder specification in the United States. In: Proceedings of 3rd Eurasphalt and Eurobitume Congress, 339 pp, Vienna, Austria (2004)

    Google Scholar 

  46. D’Angelo, J.R., Kluttz, R., Dongre, R.N., Stephens, K., Zanzotto, L.: Revision of the Superpave high temperature binder specification: the multiple stress recovery test. J. Assoc. Asphalt Paving Technol. 76, 123–162 (2007)

    Google Scholar 

  47. D’Angelo, J.R.: New high-temperature binder specification using multistress creep and recovery. Development in Asphalt Binder Specifications, Transport Research Circular, Number E-C147, p. 13 Dec (2010)

    Google Scholar 

  48. D’Angelo, J. R., Dongre, R., Reinke, G.: Evaluation of repeated creep and recovery test method as an alternative to SHRP+ requirements for polymer modified asphalt binders. In: Canadian Technical Asphalt Proceedings, Prince Edward Island, November 2006

    Google Scholar 

  49. Dawson, A., Hildebrand, G., Hofbauer, T., Mateos, A., Wiman, l.: European Co-operation in the Field of Scientific and Technical Research COST 347 Improvements in Pavement Research with Accelerated Load Testing Work Package 1: “Inventory” Work Package 1 Final Report June-2002, Working Group 1, p. 59 (2002)

    Google Scholar 

  50. De Visscher, J., Soenen, H., Vanelstrauete, A., Redelius, P.: A comparison of the zero shear viscosity from oscillation test and the repeated creep test. In: Proceedings of 3rd Eurasphalt & Eurobitume Congress, Vienna (2004)

    Google Scholar 

  51. Delaporte, B., Di Benedetto, H., Chaverot, P., Gauthier, G.: Linear viscoelastic properties of bituminous materials including new products made with ultrafine particles. Road Mater. Pavement Des. 10(1), 7–38 (2009)

    Article  Google Scholar 

  52. Delgadillo, R., Nam, K., Bahia, H.: Why do we need to change G*/sin and how? Road Mater. Pavement Des. 7(1), 7–27 (2006)

    Google Scholar 

  53. Deshpande, V., Cebon, D.: Steady-state constitutive relationship for idealised asphalt mixes. J. Mech. Mater. 31(4), 271–297 (1999)

    Article  Google Scholar 

  54. Deshpande, V.: Steady-state deformation behaviour of bituminous mixes. Ph.D. thesis, University of Cambridge, Cambridge, UK (1997)

    Google Scholar 

  55. Desmazes, C., Lecomte, M., Lesueur, D., Philips, M.: A protocol for reliable measurement of zero-shear-viscosity in order to evaluate the anti-rutting performance of binders. In: Proceedings of 2nd Eurasphalt & Eurobitume Congress, Proc.0073, Book I, pp. 203–211, Barcelona (2000)

    Google Scholar 

  56. Di Benedetto, H.: Nouvelle approche du comportement des enrobés bitumineux: résultats expérimentaux et formulation rhéologique. Mechanical tests for bituminous mixes, characterization, design and quality control, In: Proceedings of the 4th RILEM Symposium, Budapest (1990)

    Google Scholar 

  57. Di Benedetto, H., Yan, X.L.: Comportement mécanique des Enrobés bitumineux et modélisation de la contrainte maximale. Mater. Struct. 27, 539–547 (1994)

    Article  Google Scholar 

  58. Di Benedetto, H., Francken, L.: Mechanical tests for bituminous materials, recent improvements and future prospects. In: Di Benedetto, H., Francken, L. (eds.) Proceedings of 5th International RILEM Symposium MTBM97 in Lyon, 624 pp. ISBN 90-5410-876-2, Balkema (1997)

    Google Scholar 

  59. Di Benedetto, H., Partl, M.N., Francken, L., De La Roche, C.: Stiffness testing for bituminous mixtures. Mater. Struct. 34, 66–70 (2001)

    Article  Google Scholar 

  60. Di Benedetto, H., De la Roche, C., Baaj, H., Pronk, A., Lundstrom, R.: Fatigue of bituminous mixtures. Mater. Struct. 37, 202–216 (2004)

    Article  Google Scholar 

  61. Di Benedetto, H., Olard, F., Sauzéat, C., Delaporte, B.: Linear viscoelastic behaviour of bituminous materials- from binders to mixes. Road Mater. Pavement Des. 5(Special Issue EATA), 163–202 (2004)

    Article  Google Scholar 

  62. Di Benedetto, H., Corté, J.-F.: Matériaux routiers bitumineux 2: constitution et propriétés thermomécaniques des mélanges. Publication Hermes-Science, Lavoisier (2005)

    Google Scholar 

  63. Di Benedetto, H., Delaporte, B., Sauzéat, C.: Three-dimensional linear behavior of bituminous materials: experiments and modelling. ASCE Int. J. Geomech. 7(2), 149–157 (2007)

    Article  Google Scholar 

  64. Di Benedetto, H., Neifar, M., Sauzeat, C., Olard, F.: Three-dimensional thermo-viscoplastic behaviour of bituminous materials- the DBN model. Int. J. Road Mater. Pavement Des. 8(2), 285–316 (2007)

    Google Scholar 

  65. Di Benedetto, H., Delaporte, B., Sauzeat, C.: Three dimensional linear behavior of bituminous materials: experiments and modelling. ASCE Int. J. Geomech. 7(2), 149–157 (2007)

    Article  Google Scholar 

  66. Di Benedetto, H., Nguyen, H.M., Pouget, S., Sauzéat, C.: Time-Temperature superposition principle for bituminous mixtures – three dimensional approach and extension in the non-linear domain. In: Proceedings of 1st International Conference on Transport Infrastructure, pp. 178–188, Beijing (2008)

    Google Scholar 

  67. Di Benedetto, H., Sauzéat, C., Sohm, J.: Stiffness of bituminous mixtures using ultrasonic waves propagation. Road Mater. Pavement Des. 10(4), 789–814 (2009)

    Article  Google Scholar 

  68. Di Benedetto, H., Nguyen, Q., Sauzéat, C.: Nonlinearity, heating, fatigue and thixotropy during cyclic loading of asphalt mixtures. Road Mater. Pavement Des. 12(1), 129–158 (2011)

    Article  Google Scholar 

  69. Barksdale, R.D.: Compressive pulse times in flexible road pavements for use in dynamic testing. Highway Research Record No. 345, Highway Research Board, National Research Council, Washington, DC (1971)

    Google Scholar 

  70. Dongmo, B.-J.: Caracrérisation des déformations d’orniérage des chaussées bitumineuses. Ph.D. thesis, ENTPE – INSA Lyon, 325 pp (2005)

    Google Scholar 

  71. Dongre, R., D’Angelo, J., Copeland, A.: Refinement of flow number as a determined by the asphalt mixture performance tester for use in routine QC/QA practice. Transport Research Board, 88th Annual Meeting, Washington, DC (2009)

    Google Scholar 

  72. Doubbaneh, E.: Comportement mécanique des enrobes bitumineux des “petites” aux “grandes” déformations. Ph.D. thesis, ENTPE-INSA Lyon (1995)

    Google Scholar 

  73. Dreessen, S., Planche, J.P., Gardel, V.: A new performance related test method for rutting prediction: MSCRT. In: Loizos, A., Partl, M., Scarpas, T., Al-Qadi, I. (eds.) Proceedings of the 7th International RILEM Symposium ATCBM09 on Advanced Testing and Characterisation of Bituminous Materials in Rhodes, pp. 971–980. CRC Press/Balkema, Greece (2009)

    Google Scholar 

  74. Drescher, A., Kim, J.R., Newcomb, D.E.: Permanent deformation in asphalt concrete. J. Mater. Civil Eng. 5(1), 112–128 (1993)

    Article  Google Scholar 

  75. Dutine, A., Di Benedetto, H., Pham Van Bang, D., Ezaoui, A.: Anisotropic small strain elastic properties of sands and mixture of sand/clay measured by dynamic and static methods. Soils Found. 47(3), 457–472 (2007)

    Article  Google Scholar 

  76. Duttine, A.: Comportement des sables et des mélanges sable/argile sous sollicitations statiques et dynamiques avec et sans “rotation d’axes”. Ph.D. thesis, ENTPE, University of Lyon (2005)

    Google Scholar 

  77. EN 12697–22 (2007): Standard. Mélanges bitumineux – Méthodes d’essai pour mélange hydrocarboné à chaud – Partie 22: essai d’orniérage (2007)

    Google Scholar 

  78. EN 12697–7 (2003): Standard. Mélanges bitumineux – Méthodes d’essai pour mélange hydrocarboné à chaud – Partie 7: détermination de la masse volumique apparente des éprouvettes bitumineuses par les rayons gamma (2003)

    Google Scholar 

  79. EN 13108-1 (2007): European Standard. Mélanges bitumineux – Spécifications des matériaux – Partie 1: enrobés bitumineux (2007)

    Google Scholar 

  80. Ferry, J.D.: Viscoelastic Properties of Polymers. Wiley, New York (1980). 641 p

    Google Scholar 

  81. Gabet, T., Di Benedetto, H., Perraton, D., De Visscher, J., Gallet, T., Bankovski, W., Olard, F., Grenfell, J., Bodin, D., Sauzéat, C.: French wheel tracking round robin test on a polymer modified bitumen mixture. Mater. Struct. 44(6), 1031–1046 (2011). doi:DOI 10.1617/s11527-011-9733-x

    Google Scholar 

  82. Gibb, J.M.: Evaluation of resistance to permanent deformation in the design of bituminous paving mixtures. Ph.D. thesis, University of Nottingham, Nottingham, UK (1996)

    Google Scholar 

  83. Giuliani, F., Merusi, F.: Characterization of damage behavior in modified asphalt binders at high temperatures. Measurements methodologies and rheometrical aspects. In: Proceedings of 4th International SIIV Congress, Palermo, Italy (2007)

    Google Scholar 

  84. Harvey, J., Guada, I., Long, F.: Effects of material properties, specimen geometry, and specimen preparation variables on asphalt concrete tests for rutting. J. Assoc. Asphalt Paving Technol. 69, 236 (2000)

    Google Scholar 

  85. Harvey, J., Guada, I., Monismith, C., Bejarano, M., Long, F.: Repeated simple shear test for mix design – a summary of recent field and accelerated test experience in California. In: Proceedings of 9th International Conference on Asphalt Pavements, Copenhagen (2002)

    Google Scholar 

  86. Harvey, J., Weissman, S., Long, F., Monismith, C.L.: Tests to evaluate the stiffness and permanent deformation characteristics of asphalt/binder-aggregate mixes, and their use in mix design and analysis. J. Assoc. Asphalt Paving Technol. 70, 573–598 (2001)

    Google Scholar 

  87. Hight, D.W., Gens, A., Symes, M.J.: The development of a new hollow cylinder apparatus for investigating the effects of principal stress rotation in soils. Geotechnique 33(4), 355–384 (1983)

    Article  Google Scholar 

  88. Hills, J.F.: The creep of asphalt mixes. J. Inst. Pet. 59(570), 247–262 (1973)

    Google Scholar 

  89. Hochuli, A.S., Sayir, M.B., Poulikakos, L.D., Partl, M.N.: Measuring the complex modulus of asphalt mixtures by structural wave propagation. J. Assoc. Asphalt Paving Technol. 70, 646–674 (2001)

    Google Scholar 

  90. Huet, C.: Etude par une méthode d’impédance du comportement viscoélastique des matériaux hydrocarbonés. Thèse de doctorat d’ingénieur, Faculté des sciences de Paris, 69 p (1963)

    Google Scholar 

  91. Hughes, D.A.B..: Polymer grid reinforcement of asphalt pavements. Ph.D. thesis, University of Nottingham, UK (1986)

    Google Scholar 

  92. Lacroix, A., Kim, Y.R., Far, M.S.: Constructing the dynamic modulus mastercurve using impact resonance testing. J. Assoc. Asphalt Paving Technol. 78, 67–95 (2009)

    Google Scholar 

  93. LCPC: LCPC Experiment with the lcpc fatigue carrousel on the aggressiveness of loadings related to rutting of the surface layer (translation of the original French title). Technical Report, LCPC/USAP/SHELL (1992)

    Google Scholar 

  94. Long, F., Verhaeghe, B.: Validation and refinement of the transportek wheel tracking test in the South African guidelines for hot mix asphalt. In: Partl, M. (ed.) Proceedings of 6th International RILEM Symposium on Performance Testing and Evaluation of Bituminous Materials, pp. 557–564. Empa, Zurich (2003)

    Google Scholar 

  95. Lu, Y.: Temperature dependent visco-elasto-plastic evaluation of flexible pavements. Ph.D. thesis, South Bank University, London, UK (1998)

    Google Scholar 

  96. Mandel, J.: Cours de mécanique des milieux continus, Tome II. Gauthiers-Villars, Paris (1966)

    MATH  Google Scholar 

  97. Monismith, C.L., Tayebali, A.A.: Permanent deformation (rutting) considerations in asphalt concrete pavement sections. J. Assoc. Asphalt Paving Technol. 57, 414–441 (1988)

    Google Scholar 

  98. Mulhearn, T.O., Tabor, D.: Creep and hardness of metals: a physical study. J. Inst. Metals 89, 7–12 (1960)

    Google Scholar 

  99. Neifar, M., Di Benedetto, H.: Thermo-viscoplastic law for bituminous mixes. Road Mater. Pavement Des. 2(1), 71–95 (2001)

    Article  Google Scholar 

  100. Newcomb, D.E., Stroup-Gardiner, M., Olson, R., Teig, J.: Traffic densification of asphalt concrete pavement. Transportation Research Record 1575, National Research Council, pp. 1–9, Washington DC (1997)

    Google Scholar 

  101. Nguyen, H.M.: Comportement cyclique et déformations permanentes des enrobés bitumineux, Ph.D. thesis, ENTPE, University of Lyon (in French) (2010)

    Google Scholar 

  102. Nguyen, H.M., Pouget, S., Di Benedetto, H., Sauzéat, C.: Generalization of the time-temperature superposition principle for bituminous mixtures: experimentation and modelling. Euro. J. Environ. Civil Eng. 13(9), 1095–1107 (2009)

    Article  Google Scholar 

  103. Olard, F., Di Benedetto, H.: General “2S2P1D” model and relation between the linear viscoelastic behaviors of bituminous binders and mixes. Road Mater. Pavements Des. 4(2), 185–244 (2003)

    Google Scholar 

  104. Ossa, E.A.: Deformation behaviour of bitumen and bituminous mixes. Ph.D. thesis, University of Cambridge, UK (2004)

    Google Scholar 

  105. Partal, P., Martinez-Boza, F., Conde, B., Gallegos, C.: Rheological characterisation of synthetic binders and unmodified bitumens. Fuel 78, 1–10 (1999)

    Article  Google Scholar 

  106. Perraton, D., Di Benedetto, H., Sauzéat, C., De La Roche, C., Bankowski, W., Partl, M., Grenfell, J.: Rutting of bituminous mixtures- wheel tracking tests campaign analysis. Mater. Struct. 44(5), 969–986 (2011). doi:DOI 10.1617/s11527-010-9680-y

    Google Scholar 

  107. Pfeiffer, J.P., Van Doormaal, P.M.: The rheological properties of asphaltic bitumens. J. Inst. Pet. 22, 414–440 (1936)

    Google Scholar 

  108. Phillips, M.C., Robertus, C.: Binder rheology and asphaltic pavement permanent deformation; the zero-shear-viscosity. No. 5134, Euroasphalt & Eurobitume Congress, Strasbourg (France), Vol 3., p.12 (1996)

    Google Scholar 

  109. Phillips, M.C., Robertus, C.: Rheological characterisation of bitumen binders in connection with permanent deformation in asphaltic pavement – the zero-shear viscosity Concept. No. 50, The Rheology of Bituminous Binders Eurobitume Workshop, Brussels (1995)

    Google Scholar 

  110. Poirier, J.E., Delorme, J.L.: Rapport de présentation des résultats n 6-1-009, essai d’aptitude par intercomparaison, Technical Report, Institut des Routes, des Rues et des Infrastructures pour la mobilité (IDRRIM) (2010)

    Google Scholar 

  111. Pouget, S., Sauzéat, C., Di Benedetto, H., Olard, F.: From the behaviour of constituent materials to the calculation and design of orthotropic steel bridge structures. Road Mater. Pavement Des. 11(Special Issue EATA), 111–144 (2010)

    Article  Google Scholar 

  112. Pouget, S., Sauzéat, C., Di Benedetto, H., Olard, F.: Numerical simulation of the five-point bending test designed to study bituminous wearing courses on orthotropic steel bridge. Mater. Struct. 43(3), 319–330 (2010). doi:DOI 10.1617/s11527-009-9491-1

    Google Scholar 

  113. Read, J., Whiteoak, D.: The Shell Bitumen Handbook. Thomas Telford Ltd., London (2003). 464 p

    Google Scholar 

  114. Richardson, I.: The stress–strain behaviour of dry granular material subjected to repeated loading in a hollow cylinder apparatus. Ph.D. thesis, University of Nottingham, UK (1999)

    Google Scholar 

  115. Sides, A., Uzan, J., Perl, M.: A comprehensive viscoelastic-plastic characterization of sand-asphalt compressive and tensile cyclic loading. J. Test. Eval. 13(1), 49–59 (1985)

    Article  Google Scholar 

  116. Sousa, J.M.B.: Dynamic properties of pavement materials. Ph.D. thesis, University of California at Berkeley, USA (1986)

    Google Scholar 

  117. Stephenson, R.W., Manke, P.G.: Ultrasonic moduli of asphalt concrete. Highway Res. Rec. 404, 8–21 (1972)

    Google Scholar 

  118. Sybilski, D.: Zero-shear viscosity of bituminous binder and its relation to bituminous mixture’s rutting resistance. Transport. Res. Rec. 1535, 15–21 (1996)

    Article  Google Scholar 

  119. Tabor, D.: Hardness of Metals. Clarendon, Oxford (1951)

    Google Scholar 

  120. Tekieli, K.: The shearing characteristics of asphalt. First Year Postgraduate Research Report, NTEC Report No. 10066, School of Civil Engineering, The University of Nottingham (2010)

    Google Scholar 

  121. Thom, N.H.: Design of road foundations. Ph.D. thesis, University of Nottingham, UK (1988)

    Google Scholar 

  122. Tiouajni, S., Di Benedetto, H., Sauzéat, C., Pouget, S.: Approximation of a linear viscoelastic model by a generalized Kelvin-Voigt model or a generalized Maxwell model having N bodies: application to bituminous materials. Road Materials and Pavement Design, 12(4), p. 897–930 (2011)

    Google Scholar 

  123. Tracking Test, Determination of the Track Depth of High-Stability Binding Layers. Construction Bureau, Civil Engineering Office, Department of City Traffic, Hamburg, Germany (1991)

    Google Scholar 

  124. Van de Loo, P.J.: Creep testing, a simple tool to judge asphalt mix stability. J. Assoc. Asphalt Paving Technol. 43, 253–285 (1974)

    Google Scholar 

  125. Vlachovicova, Z., Zanzotto, L., Stastna, J., Creep and Recovery in Asphalt Modified by Radial SBS, Transportation Research Board Annual Meeting, Washington (2005)

    Google Scholar 

  126. Whitmoyer, S.L., Kim, Y.R.: Determination of elastic properties of asphalt concrete using vibrational analysis. ASTM J. Test. Eval. 22(2), 139–148 (1994)

    Article  Google Scholar 

  127. Williams, M.L., Landel, R.F., Ferry, J.D.: The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77, 3701–3707 (1955)

    Article  Google Scholar 

  128. Witczak, M.W., Kaloush, K., Pellinen, T., El-Basyouny, M., Von Quintus, H.: Simple Performance Test for Superpave Mix Design. Transportation Research Board No. 465. National Research Council/National Academy Press, Washington, DC (2002). 105 p

    Google Scholar 

  129. Witczak, M.W., Root, R.E.: Summary of complex modulus laboratory test procedures and results. Am. Soc. Test. Mater. STP 561, 67–94 (1974)

    Google Scholar 

  130. Witczak, M.W., Fonseca, O.A.: Revised predictive model for dynamic (complex) modulus of asphalt mixtures. J. Transport. Res. Rec. 1540, 15–32 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hérve Di Benedetto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 RILEM

About this chapter

Cite this chapter

Di Benedetto, H., Gabet, T., Grenfell, J., Perraton, D., Sauzéat, C., Bodin, D. (2013). Mechanical Testing of Bituminous Mixtures. In: Partl, M.N., et al. Advances in Interlaboratory Testing and Evaluation of Bituminous Materials. RILEM State-of-the-Art Reports, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5104-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5104-0_4

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5103-3

  • Online ISBN: 978-94-007-5104-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics