Advertisement

Knowledge Digest Engine for Personal Bigdata Analysis

  • Youngrae Kim
  • Jinyoung Moon
  • Hyung-Jik Lee
  • Chang-Seok Bae
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 182)

Abstract

The bigdata analysis has an issue of high knowledge creation. In this paper first, we define personal big data, and using personal bigdata created by user activity we try to create high knowledge about the user. We have created personal bigdata analytic engine and knowledge digest engine for high knowledge creation and personalized service. The engine is used to collect, process and analyize personal big data. And In the process we refine, associate, and fuse data for analysis. In this paper, we show the process of analyzing personal big data, and detailed structure of analyzing engine for persoanl big data. High knowledge about the user will lead to better personalized services, and better adaptive services.

Keywords

User Activity Analysis Personal Bigdata personalized services adaptive services 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Parkka, J., Ermes, M., Korpipaa, P., Mantyjarvi, J., Peltola, J., Korhonen, I.: Activity classification using realistic data from wearable sensors. IEEE Transactions on Information Technology in Biomedicine 10, 119–128 (2006)CrossRefGoogle Scholar
  2. 2.
    Bao, L., Intille, S.S.: Activity Recognition from User-Annotated Acceleration Data. In: Ferscha, A., Mattern, F. (eds.) PERVASIVE 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Popa, M.: Pedestrian Navigation System for Indoor and Outdoor Environments. In: Hippe, Z.S., Kulikowski, J.L., Mroczek, T. (eds.) Human – Computer Systems Interaction: Backgrounds and Applications 2, Part I, AISC, vol. 98, pp. 487–502. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Kobsa, A.: Generic User Modeling Systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 136–154. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Russom, P.: TDWI Best practices report: Big Data analytics q4 2011. The data Warehousing Institute (2011)Google Scholar
  6. 6.
    Ahn, J.-w., Taieb-Maimon, M., Sopan, A., Plaisant, C., Shneiderman, B.: Temporal Visualization of Social Network Dynamics: Prototypes for Nation of Neighbors. In: Salerno, J., Yang, S.J., Nau, D., Chai, S.-K. (eds.) SBP 2011. LNCS, vol. 6589, pp. 309–316. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Marres, N., Weltevrede, E.: Scraping the Social? Issues in real-time social research. Journal of Cultural Economy (subm.), 1–52, (Article): Goldsmiths Research Online Google Scholar
  8. 8.
    Procci, K., Bohnsack, J., Bowers, C.: Patterns of Gaming Preferences and Serious Game Effectiveness. In: Shumaker, R. (ed.) Virtual and Mixed Reality, Part II. LNCS, vol. 6774, pp. 37–43. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Linden, G., Smith, B., York, J.: Amazon. com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing 7(1), 76–80 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Youngrae Kim
    • 1
  • Jinyoung Moon
    • 1
  • Hyung-Jik Lee
    • 1
  • Chang-Seok Bae
    • 1
  1. 1.Electronics and Telecommunication Research InstituteDaejeonKorea

Personalised recommendations