Federated Mobile Activity Recognition Using a Smart Service Adapter for Cloud Offloading

  • Arun Kishore Ramakrishnan
  • Nayyab Zia Naqvi
  • Davy Preuveneers
  • Yolande Berbers
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 182)

Abstract

Mobile based activity recognition is gaining importance with the ever increasing sensing, communication and computational power of smart phones. Our work addresses the current key challenges in the field of mobile sensing - how to make continuous sensing mobile applications both efficient and scalable. We motivate our work with a smart context-aware e-health application. Activities of daily living are modeled using a hidden Markov model and the classified activities are used to adapt sensing and feature extraction to decrease the energy consumption on the mobile. We present a federated context-management framework for activity recognition which implements a smart service adapter to offload execution to the cloud to achieve scalability and efficiency.

Keywords

activity recognition hidden Markov model Markov decision process remote processing cloud computing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zelkha, E., Epstein, B., Simon Birrell, S., Dodsworth, C.: From devices to ambient intelligence: The transformation of consumer electronics. In: Digital Living Room Conference (June 1998)Google Scholar
  2. 2.
    Peebles, D., Lu, H., Lane, N.D., Choudhury, T., Campbell, A.T.: Community guided learning: Exploiting mobile sensor users to model human behavior. In: AAAI (2010)Google Scholar
  3. 3.
    Jovanovic-Peterson, L.: Excarbs, a new way of control through exercise. The Diabetes Health (July 1995)Google Scholar
  4. 4.
    Lee, M.W., Khan, A.M., Kim, T.S.: A single tri-axial accelerometer-based real-time personal life log system capable of human activity recognition and exercise information generation. Personal Ubiquitous Comput. 15(8), 887–898 (2011)CrossRefGoogle Scholar
  5. 5.
    Lu, H., Yang, J., Liu, Z., Lane, N.D., Choudhury, T., Campbell, A.T.: The jigsaw continuous sensing engine for mobile phone applications. In: Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems. SenSys 2010, pp. 71–84. ACM, New York (2010)CrossRefGoogle Scholar
  6. 6.
    Li, A., Ji, L., Wang, S., Wu, J.: Physical activity classification using a single triaxial accelerometer based on HMM. In: IET, pp. 155–160 (2010)Google Scholar
  7. 7.
    Howard, R.A.: Dynamic Programming and Markov Processes. MIT Press, Cambridge (1960)MATHGoogle Scholar
  8. 8.
    Aggarwal, J., Ryoo, M.: Human activity analysis: A review. ACM Comput. Surv. 43(3), 16:1–16:43 (2011)CrossRefGoogle Scholar
  9. 9.
    Wilkins, M.: Report on the use and benefits of wearable displays, sensors and localization technologies for rst responder support. COPE Deliverable D5.6.3 (2010)Google Scholar
  10. 10.
    Lane, N.D., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T., Campbell, A.T.: A survey of mobile phone sensing. Comm. Mag. 48(9), 140–150 (2010)CrossRefGoogle Scholar
  11. 11.
    Lee, Y.-S., Cho, S.-B.: Activity Recognition Using Hierarchical Hidden Markov Models on a Smartphone with 3D Accelerometer. In: Corchado, E., Kurzyński, M., Woźniak, M. (eds.) HAIS 2011, Part I. LNCS, vol. 6678, pp. 460–467. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Consolvo, S., McDonald, D.W., Toscos, T., Chen, M.Y., Froehlich, J., Harrison, B., Klasnja, P., LaMarca, A., LeGrand, L., Libby, R., Smith, I., Landay, J.A.: Activity sensing in the wild: a eld trial of ubifit garden. In: Proceedings of the Twenty-Sixth Annual SIGCHI Conference. CHI 2008, pp. 1797–1806. ACM, New York (2008)CrossRefGoogle Scholar
  13. 13.
    Cuervo, E., Balasubramanian, A., Cho, D.K., Wolman, A., Saroiu, S., Chandra, R., Bahl, P.: Maui: making smartphones last longer with code ooad. In: Proceedings of the 8th International Conference on Mobile Systems, Applications and Services. MobiSys 2010, pp. 49–62. ACM, New York (2010)CrossRefGoogle Scholar
  14. 14.
    Chun, B.G., Maniatis, P.: Augmented smartphone applications through clone cloud execution. In: Proceedings of the 12th Conference on Hot Topics in Operating Systems. HotOS 2009, p. 8. USENIX Association, Berkeley (2009)Google Scholar
  15. 15.
    Badidi, E., Esmahi, L.: A cloud-based approach for context information provisioning. CoRR abs/1105.2213 (2011)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Arun Kishore Ramakrishnan
    • 1
  • Nayyab Zia Naqvi
    • 1
  • Davy Preuveneers
    • 1
  • Yolande Berbers
    • 1
  1. 1.IBBT-DistriNetKU LeuvenLeuvenBelgium

Personalised recommendations