A Study on Skyline Processing Using Hyperplane Projections in Multidimensional Sensor Data

  • Sun-Young Ihm
  • Su-Kyung Choi
  • Young-Sik Jeong
  • Young-Ho Park
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 181)


In sensor networks, data has many attributes and these attributes will be real values like temperature or moisture conditions. In this paper, we handle these sensor data with skyline processing for searching the data. Skyline processing is the one of representative method for top-k query processing. A top-k query returns k tuples with the lowest score from multidimensional relation consists of sensor data. We propose a method which improves the plane-project-parallel-skyline by eliminating data tuples. Our approach computes the approximate skyline once again when the number of data tuples in the subspace is bigger than other subspaces.


Skyline Processing Multidimensional Sensor Data 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bartolini, I., Ciaccia, P., Patella, M.: Efficient sort-based skyline evaluation. In: ACM TODS, vol. 33(4), pp. 1–45 (2008)Google Scholar
  2. 2.
    Borzsony, S., Kossmann, D., Stocker, K.: The Skyline operator. In: Proceedings of the 17th International Conference on Data Engineering (ICDE), Heidelberg, Germany, pp. 421–430 (2001)Google Scholar
  3. 3.
    Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with presorting. In: ICDE, pp. 717–719 (2003)Google Scholar
  4. 4.
    Godfrey, P., Shipley, R., Gryz, J.: Maximal vector computation in large data sets. In: VLDB (2005)Google Scholar
  5. 5.
    Kohler, H., Yang, J., Zhou, X.: Efficient Parallel Skyline Processing using Hyperplane Projections. In: SIGMOD. ACM (2011)Google Scholar
  6. 6.
    Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: an online algorithm for skyline queries. In: VLDB (2002)Google Scholar
  7. 7.
    Lee, K.C.K., Zheng, B., Li, H., Lee, W.C.: Approaching the skyline in z order. In: VLDB (2007)Google Scholar
  8. 8.
    Li, X., Kim, Y.J., Govindan, R., Hong, W.: Multi-dimensional range queries in sensor networks. In: 1st International Conference on Embedded Networked Sensor Systems, pp. 63–75. ACM, Los Angeles (2003)Google Scholar
  9. 9.
    Morse, M., Patel, J.M., Jagadish, H.V.: Efficient skyline computation over low-cardinality domains. In: VLDB (2007)Google Scholar
  10. 10.
    Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive skyline computation in database systems. In: ACM TODS, vol. 30(1), pp. 41–82 (2005)Google Scholar
  11. 11.
    Vlachou, A., Doulkeridis, C., Kotidis, Y.: Angle-based space partitioning for efficient parallel skyline computation. In: SIGMOD, pp. 227–238 (2008)Google Scholar
  12. 12.
    Wu, P., Zhang, C., Feng, Y., Zhao, B.Y., Agrawal, D.P., El Abbadi, A.: Parallelizing Skyline Queries for Scalable Distribution. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 112–130. Springer, Heidelberg (2006)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Sun-Young Ihm
    • 1
  • Su-Kyung Choi
    • 1
  • Young-Sik Jeong
    • 2
  • Young-Ho Park
    • 1
  1. 1.Dept. of Multimedia ScienceSookmyung Women’s UniversitySeoulKorea
  2. 2.Dept. of Computer EngineeringWonKwang UniversityJeonbukKorea

Personalised recommendations