Advertisement

A Mobile Device Group Based Fault Tolerance Scheduling Algorithm in Mobile Grid

  • JongHyuk Lee
  • SungJin Choi
  • Taeweon Suh
  • JoonMin Gil
  • Weidong Shi
  • HeonChang Yu
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 181)

Abstract

The mobile grid is a kind of grid computing that incorporates mobile devices into the infrastructure. Although mobile devices are typically more resource-constrained than static devices, it has potential to be used as grid resources because of its unique functionality such as location-awareness. In this paper, we propose a group-based fault tolerance scheduling algorithm that aims to improve utilization of resources and reliability of task execution in mobile grid through scheduling groups and fault tolerance algorithm. The experimental results showed that the group-based scheduling algorithm with replication is superior to the group-based scheduling algorithm without fault tolerance and the group-based scheduling algorithm with checkpointing.

Keywords

mobile grid scheduling algorithm fault tolerance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lee, J., Choi, S., Suh, T., Yu, H.: Mobility-aware balanced scheduling algorithm in mobile grid based on mobile agent. The Knowledge Engineering Review (accepted for publication)Google Scholar
  2. 2.
    Lee, J., Choi, S., Gil, J., Suh, T., Yu, H.: A scheduling algorithm with dynamic properties in mobile grid. Information (submitted for publication)Google Scholar
  3. 3.
    Park, S.M., Ko, Y.B., Kim, J.H.: Disconnected operation service in mobile grid computing. In: Proceedings of the International Conference on Service Oriented Computing, pp. 499–513. Springer (2003)Google Scholar
  4. 4.
    Lee, J., Song, S., Gil, J., Chung, K., Suh, T., Yu, H.: Balanced Scheduling Algorithm Considering Availability in Mobile Grid. In: Abdennadher, N., Petcu, D. (eds.) GPC 2009. LNCS, vol. 5529, pp. 211–222. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Lee, J., Choi, S., Suh, T., Yu, H., Gil, J.: Group-based Scheduling Algorithm for Fault Tolerance in Mobile Grid. In: Kim, T.-h., Stoica, A., Chang, R.-S. (eds.) SUComS 2010. CCIS, vol. 78, pp. 394–403. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Lee, J., Choi, S., Lim, J., Suh, T., Gil, J., Yu, H.: Mobile Grid System Based on Mobile Agent. In: Kim, T.-h., Yau, S.S., Gervasi, O., Kang, B.-H., Stoica, A., Ślęzak, D. (eds.) GDC and CA 2010. Communications in Computer and Information Science, vol. 121, pp. 117–126. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Gelenbe, E.: On the optimum checkpoint interval. J. ACM 26(2), 259–270 (1979)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Ling, Y., Mi, J., Lin, X.: A variational calculus approach to optimal checkpoint placement. IEEE Transactions on Computers 50(7), 699–708 (2001)CrossRefGoogle Scholar
  9. 9.
    Ren, X., Eigenmann, R., Bagchi, S.: Failure-aware checkpointing in fine-grained cycle sharing systems (2007)Google Scholar
  10. 10.
    Casanova, H., Legrand, A., Quinson, M.: SimGrid: a Generic Framework for Large-Scale Distributed Experiments. In: 10th IEEE International Conference on Computer Modeling and Simulation (2008)Google Scholar
  11. 11.
    A Community Resource for Archiving Wireless Data At Dartmouth, http://crawdad.cs.dartmouth.edu/dartmouth/campus/syslog/05_06
  12. 12.
    Hwang, S., Kesselman, C.: A flexible framework for fault tolerance in the grid. Journal of Grid Computing 1(3), 251–272 (2003)MATHCrossRefGoogle Scholar
  13. 13.
    Lee, H., Chung, K., Chin, S., Lee, J., Lee, D., Park, S., Yu, H.: A resource management and fault tolerance services in grid computing. Journal of Parallel and Distributed Computing 65(11), 1305–1317 (2005)CrossRefGoogle Scholar
  14. 14.
    Chtepen, M., Claeys, F.H., Dhoedt, B., Turck, F.D., Demeester, P., Vanrolleghem, P.A.: Adaptive task checkpointing and replication: Toward efficient fault-tolerant grids. IEEE Transactions on Parallel and Distributed Systems 20(2), 180–190 (2009)CrossRefGoogle Scholar
  15. 15.
    Darby III, P.J.D., Tzeng, N.F.: Decentralized qos-aware checkpointing arrangement in mobile grid computing. Mobile Computing. IEEE Transactions on Mobile Computing 9(8), 1173–1186 (2010)CrossRefGoogle Scholar
  16. 16.
    Tanenbaum, A.S., Steen, M.V.: Distributed systems: Principles and Paradigms. Prentice-Hall (2006)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • JongHyuk Lee
    • 1
  • SungJin Choi
    • 2
  • Taeweon Suh
    • 3
  • JoonMin Gil
    • 4
  • Weidong Shi
    • 1
  • HeonChang Yu
    • 3
  1. 1.University of HoustonHoustonUSA
  2. 2.Samsung Electronics, Co. Ltd.Gyeonggi-doKorea
  3. 3.Korea UniversitySeoulKorea
  4. 4.Catholic University of DaeguGyeongsangbuk-doKorea

Personalised recommendations