VBR Video Abstraction for Home-Network Reservation

  • Laurent Lemarchand
  • Maxime Louvel
  • Jean-Philippe Babau
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 181)


Home network reservation is classically based on token bucket policy. Token bucket parameter setting is a trade-off between maximizing the quality of service and optimizing the resource usage. In this paper, we propose dynamic parameter setting, based on a bitrate hull, following bitrate evolution. A shortest path algorithm is used to compute an optimal hull, according to implementation constraints, reservation period and number of reservations.

Hull-based reservation simulations show a reduction of the mean network reservation without decreasing the quality of service.


home network QoS multimedia VBR 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adas, A.M.: Using adaptative linear prediction to support real-time VBR video under RCBR network service model. IEEE/ACM Transactions on Networking 6(5), 635–644 (1998)CrossRefGoogle Scholar
  2. 2.
    Bellman, R.: On a routing problem. Quarterly of Applied Mathematics 16(1), 87–90 (1958)MathSciNetMATHGoogle Scholar
  3. 3.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press (2001)Google Scholar
  4. 4.
    Doulamis, A.D., Doulamis, N.D., Kollias, S.D.: Traffic prediction and network resources estimation of VBR MPEG-2 sources using adaptively trained neural networks. In: 10th Mediterranean Electrotechnical Conference, MELECON 2000, vol. 2, pp. 717–720 (2000)Google Scholar
  5. 5.
    Garroppo, R.G., Giordano, S., Tavanti, L.: A survey on multi-constrained optimal path computation: Exact and approximate algorithms. Comput. Netw. 54, 3081–3107 (2010)MATHCrossRefGoogle Scholar
  6. 6.
    Grossglauser, M., Keshav, S., Tse, D.N.C.: RCBR: a simple and efficient service for multiple time-scale traffic. IEEE/ACM Trans. Netw. 5, 741–755 (1997)CrossRefGoogle Scholar
  7. 7.
    Kang, S., Lee, S., Won, Y., Seong, B.: On-line prediction of nonstationary variable-bit-rate video traffic. IEEE Transactions on Signal Processing 58(3), 1219–1237 (2010)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kishore, M., Liang, Y.: An empirical study on renegotiated CBR for VBR video services based on network testbed. IEEE Transactions on Broadcasting 52, 362–367 (2006)CrossRefGoogle Scholar
  9. 9.
    Knightly, E.W., Zhang, H.: D-bind: an accurate traffic model for providing QoS guarantees to VBR traffic. IEEE/ACM Transactions on Networking 5(2), 219–231 (1997)CrossRefGoogle Scholar
  10. 10.
    Krunz, M.M., Makowski, A.M.: Modeling video traffic using m/g/ infin; input processes: a compromise between markovian and LRD models. IEEE Journal on Selected Areas in Communications 16(5), 733–748 (1998)CrossRefGoogle Scholar
  11. 11.
    Liebeherr, J., Wrege, D.E.: An efficient solution to traffic characterization of VBR video in quality-of-service networks. ACM/Springer Multimedia Systems Journals 6, 271–284 (1998)CrossRefGoogle Scholar
  12. 12.
    Louvel, M., Bonhomme, P., Babau, J.-P., Plantec, A.: A network resource management framework for multimedia applications distributed in heterogeneous home networks. In: Proceedings of the IEEE International Conference on Advanced Information Networking and Applications (AINA), pp. 724–731 (March 2011)Google Scholar
  13. 13.
    Mao, G., Liu, H.: Real time variable bit rate video traffic prediction. International Journal of Communication Systems 20(4), 491–505 (2007)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Nahrstedt, K., Steinmetz, R.: Resource management in networked multimedia systems. Computer 28(5), 52–63 (1995)CrossRefGoogle Scholar
  15. 15.
    Devi Ritesh Kalle, U.C., Kalyanaraman, S.: Multi-tiered, burstiness-aware bandwidth estimation and scheduling for VBR video flows. In: 19th IEEE International Workshop on Quality of Service (IWQoS 2011), pp. 1–9 (June 2011)Google Scholar
  16. 16.
    Rizvanovic, L., Fohler, G.: The matrix - a framework for real-time resource management for video streaming in networks of heterogeneous devices. In: International Conference on Consumer Electronics, ICCE 2007, Digest of Technical Papers, pp. 1–2 (January 2007)Google Scholar
  17. 17.
    UPnPTM. UPnP-QoS architecture v3.0. Technical report, UPnP TM Forum (2008) Google Scholar
  18. 18.
    Wrege, D.E., Knightly, E.W., Zhang, H., Liebeherr, J.: Deterministic delay bounds for VBR video in packet-switching networks: fundamental limits and practical trade-offs. IEEE/ACM Transactions on Networking 4(3), 352–362 (1996)CrossRefGoogle Scholar
  19. 19.
    Zhang, H., Knightly, E.W.: Red-VBR: a renegotiation-based approach to support delay-sensitive VBR video. Multimedia Systems 5, 164–176 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Laurent Lemarchand
    • 1
  • Maxime Louvel
    • 1
  • Jean-Philippe Babau
    • 1
  1. 1.Lab-STICCUBO, Université Européenne de BretagneBrestFrance

Personalised recommendations