Skip to main content

Stretch Effects on Atrial Conduction: A Potential Contributor to Arrhythmogenesis

  • Chapter
  • First Online:
  • 796 Accesses

Part of the book series: Mechanosensitivity in Cells and Tissues ((MECT,volume 6))

Abstract

The role of atrial stretch in the development and maintenance of atrial fibrillation (AF) is well-recognized, nevertheless the mechanisms underlying the phenomenon are not fully understood. Atrial dilatation may contribute to the occurrence of atrial arrhythmias through the modulation of several electrophysiological parameters, promoting focal arrhythmias or maintaining irregular activation through substrate modification. An important factor, leading to the formation of an arrhythmic substrate, has been identified in the stretch-induced modulation of atrial conduction. Experimental and clinical studies evaluating the effect of stretch on conduction are reviewed and the potential contribution of this factor to arrhythmogenesis is discussed. In both animal and human atria, acute stretch has been demonstrated to depress and increase the heterogeneity of conduction velocity, with effects dependent on the underlying atrial architecture. Stretch-induced alterations of conduction properties have been shown to be paralleled by an increased vulnerability of the atria to the occurrence of AF episodes. Slowed propagation may indeed favor the formation of reentries by wavelength shortening, while conduction heterogeneities may contribute to wavefront breakup. Conduction changes observed during acute stretch may even worsen during prolonged stretch conditions, where structural alterations, such as fibrosis and cell hyperthrophy, may lead to an electrical dissociation between muscle bundles and between atrial wall layers. All these findings provide evidence for the crucial role of stretch-induced conduction disturbances in the formation of the complex, multidimensional, arrhythmic substrate leading to the perpetuation of AF.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allessie MA (2011) Stretch and speed: a complicated couple. J Cardiovasc Electrophysiol 22(4):402–404

    Article  PubMed  Google Scholar 

  • Allessie MA, Lammers WJEP, Rensma PL, Schalij MJ, Kirchhof CJHJ (1988) Determinants of reentry in cardiac muscle. Progr Cardiol 1(2):3–15

    Google Scholar 

  • Allessie MA, de Groot NM, Houben RP, Schotten U, Boersma E, Smeets JL, Crijns HJ (2010) Electropathological substrate of long-standing persistent atrial fibrillation in patients with structural heart disease: longitudinal dissociation. Circ Arrhythm Electrophysiol 3(6):606–615

    Article  PubMed  Google Scholar 

  • Allessie M, Ausma J, Schotten U (2002) Electrical, contractile and structural remodeling during atrial fibrillation. Cardiovasc Res 54(2):230–246

    Article  PubMed  CAS  Google Scholar 

  • Ausma J, Wijffels M, Thone F, Wouters L, Allessie M, Borgers M (1997) Structural changes of atrial myocardium due to sustained atrial fibrillation in the goat. Circulation 96(9):3157–3163

    Article  PubMed  CAS  Google Scholar 

  • Bayly PV, KenKnight BH, Rogers JM, Hillsley RE, Ideker RE, Smith WM (1998) Estimation of conduction velocity vector fields from epicardial mapping data. IEEE Trans Biomed Eng 45(5):563–571

    Article  PubMed  CAS  Google Scholar 

  • Boyden PA, Hoffman BF (1981) The effects on atrial electrophysiology and structure of surgically induced right atrial enlargement in dogs. Circ Res 49(6):1319–1331

    Article  PubMed  CAS  Google Scholar 

  • Brodsky MA, Allen BJ, Capparelli EV, Luckett CR, Morton R, Henry WL (1989) Factors determining maintenance of sinus rhythm after chronic atrial fibrillation with left atrial dilatation. Am J Cardiol 63(15):1065–1068

    Article  PubMed  CAS  Google Scholar 

  • Calkins H, el Atassi R, Kalbfleisch S, Langberg J, Morady F (1992) Effects of an acute increase in atrial pressure on atrial refractoriness in humans. PACE 15(11 Pt 1):1674–1680

    Article  PubMed  CAS  Google Scholar 

  • Camelliti P, Borg TK, Kohl P (2005) Structural and functional characterization of cardiac fibroblast. Cardiovasc Res 65:40–51

    Article  PubMed  CAS  Google Scholar 

  • Chang SL, Chen YC, Chen YJ, Wangcharoen W, Lee SH, Lin CI, Chen SA (2007) Mechanoelectrical feedback regulates the arrhythmogenic activity of pulmonary veins. Heart 93(1):82–88

    Article  PubMed  Google Scholar 

  • Chen YJ, Tai CT, Chiou CW, Wen ZC, Chan P, Lee SH, Chen SA (1999) Inducibility of atrial fibrillation during atrioventricular pacing with varying intervals: role of atrial electrophysiology and the autonomic nervous system. J Cardiovasc Electrophysiol 10(12):1578–1585

    Article  PubMed  CAS  Google Scholar 

  • Chorro FJ, Egea S, Mainar L, Canoves J, Sanchis J, Llavador E, Lopez-Merino V, Such L (1998) Acute changes in wavelength of the process of auricular activation induced by stretching. Experimental study. Rev Esp Cardiol 51(11):874–883

    PubMed  CAS  Google Scholar 

  • de Bakker JM, van Capelle FJ, Janse MJ, Tasseron S, Vermeulen JT, de Jonge N, Lahpor JR (1993) Slow conduction in the infarcted human heart. 'Zigzag' course of activation. Circulation 88(3):915–926

    Article  PubMed  Google Scholar 

  • de Groot NM, Houben RP, Smeets JL, Boersma E, Schotten U, Schalij MJ, Crijns H, Allessie MA (2010) Electropathological substrate of longstanding persistent atrial fibrillation in patients with structural heart disease: epicardial breakthrough. Circulation 122(17):1674–1682

    Article  PubMed  Google Scholar 

  • Deck KA (1964) Changes in the resting potential and the cable properties of Purkinje fibers during stretch. Pflugers Arch Gesamte Physiol Menschen Tiere 280:131–140

    Article  PubMed  CAS  Google Scholar 

  • Dominguez G, Fozzard HA (1979) Effect of stretch on conduction velocity and cable properties of cardiac Purkinje fibers. Am J Physiol 237(3):C119–C124

    PubMed  CAS  Google Scholar 

  • Dreifus LS (1993) Arrhythmias in valvular heart disease. Cardiovasc Clin 23:65–74

    PubMed  CAS  Google Scholar 

  • Duffy HS, Wit AL (2008) Is there a role for remodeled connexins in AF? No simple answers. J Mol Cell Cardiol 44(1):4–13

    Article  PubMed  CAS  Google Scholar 

  • Eckstein J, Verheule S, de Groot NM, Allessie M, Schotten U (2008) Mechanisms of perpetuation of atrial fibrillation in chronically dilated atria. Prog Biophys Mol Biol 97(2–3):435–451

    Article  PubMed  Google Scholar 

  • Eckstein J, Maesen B, Linz D, Zeemering S, van Hunnik A, Verheule S, Allessie M, Schotten U (2011) Time course and mechanisms of endo-epicardial electrical dissociation during atrial fibrillation in the goat. Cardiovasc Res 89(4):816–824

    Article  PubMed  CAS  Google Scholar 

  • Eijsbouts S, Van Zandvoort M, Schotten U, Allessie M (2003) Effects of acute atrial dilation on heterogeneity in conduction in the isolated rabbit heart. J Cardiovasc Electrophysiol 14(3):269–278

    Article  PubMed  Google Scholar 

  • Everett TH, Wilson EE, Hulley GS, Olgin JE (2010) Transmural characteristics of atrial fibrillation in canine models of structural and electrical atrial remodeling assessed by simultaneous epicardial and endocardial mapping. Heart Rhythm 7(4):506–517

    Article  PubMed  Google Scholar 

  • Fitzgerald TN, Rhee EK, Brooks DH, Triedman JK (2003) Estimation of cardiac conduction velocities using small data sets. Ann Biomed Eng 31(3):250–261

    Article  PubMed  Google Scholar 

  • Francis GS (1986) Development of arrhythmias in the patient with congestive heart failure: pathophysiology, prevalence and prognosis. Am J Cardiol 57(3):3B–7B

    Article  PubMed  CAS  Google Scholar 

  • Haugan K, Miyamoto T, Takeishi Y, Kubota I, Nakayama J, Shimojo H, Hirose M (2006) Rotigaptide (ZP123) improves atrial conduction slowing in chronic volume overload-induced dilated atria. Basic Clin Pharmacol Toxicol 99(1):71–79

    Article  PubMed  CAS  Google Scholar 

  • Hirose M, Takeishi Y, Miyamoto T, Kubota I, Laurita KR, Chiba S (2005) Mechanism for atrial tachyarrhythmia in chronic volume overload-induced dilated atria. J Cardiovasc Electrophysiol 16(7):760–769

    Article  PubMed  Google Scholar 

  • Hoglund C, Rosenhamer G (1985) Echocardiographic left atrial dimension as a predictor of maintaining sinus rhythm after conversion of atrial fibrillation. Acta Med Scand 217(4):411–415

    Article  PubMed  CAS  Google Scholar 

  • Hu H, Sachs F (1997) Stretch-activated ion channels in the heart. J Mol Cell Cardiol 29(6):1511–1523

    Article  PubMed  CAS  Google Scholar 

  • Jacquemet V, Henriquez CS (2008) Loading effect of fibroblast-myocyte coupling on resting potential, impulse propagation, and repolarization: insights from a microstructure model. Am J Physiol Heart Circ Physiol 294(5):H2040–H2052

    Article  PubMed  CAS  Google Scholar 

  • Kalifa J, Jalife J, Zaitsev AV, Bagwe S, Warren M, Moreno J, Berenfeld O, Nattel S (2003) Intra-atrial pressure increases rate and organization of waves emanating from the superior pulmonary veins during atrial fibrillation. Circulation 108(6):668–671

    Article  PubMed  Google Scholar 

  • Kamkin A, Kiseleva I, Wagner KD, Leiterer KP, Theres H, Scholz H, Gunther J, Lab MJ (2000) Mechano-electric feedback in right atrium after left ventricular infarction in rats. J Mol Cell Cardiol 32(3):465–477

    Article  PubMed  CAS  Google Scholar 

  • Kamkin A, Kiseleva I, Wagner KD, Bohm J, Theres H, Gunther J, Scholz H (2003) Characterization of stretch-activated ion currents in isolated atrial myocytes from human hearts. Pflugers Arch 446(3):339–346

    PubMed  CAS  Google Scholar 

  • Kamkin A, Kiseleva I, Lozinsky I, Scholz H (2005) Electrical interaction of mechanosensitive fibroblasts and myocytes in the heart. Basic Res Cardiol 100(4):337–345

    Article  PubMed  CAS  Google Scholar 

  • Kanagaratnam P, Rothery S, Patel P, Severs NJ, Peters NS (2002) Relative expression of immunolocalized connexins 40 and 43 correlates with human atrial conduction properties. J Am Coll Cardiol 39(1):116–123

    Article  PubMed  CAS  Google Scholar 

  • Kaseda S, Zipes DP (1988) Contraction-excitation feedback in the atria: a cause of changes in refractoriness. J Am Coll Cardiol 11(6):1327–1336

    Article  PubMed  CAS  Google Scholar 

  • Keren G, Etzion T, Sherez J, Zelcer AA, Megidish R, Miller HI, Laniado S (1987) Atrial fibrillation and atrial enlargement in patients with mitral stenosis. Am Heart J 114(5):1146–1155

    Article  PubMed  CAS  Google Scholar 

  • Klein LS, Miles WM, Zipes DP (1990) Effect of atrioventricular interval during pacing or reciprocating tachycardia on atrial size, pressure, and refractory period. Contraction-excitation feedback in human atrium. Circulation 82(1):60–68

    Article  PubMed  CAS  Google Scholar 

  • Kohl P, Cooper PJ, Holloway H (2003) Effects of acute ventricular volume manipulation on in situ cardiomyocyte cell membrane configuration. Prog Biophys Mol Biol 82(1–3):221–227

    Article  PubMed  Google Scholar 

  • Kohl P, Camelliti P, Burton FL, Smith GL (2005) Electrical coupling of fibroblasts and myocytes: relevance for cardiac propagation. J Electrocardiol 38(4 Suppl):45–50

    Article  PubMed  Google Scholar 

  • Kojodjojo P, Kanagaratnam P, Markides V, Davies DW, Peters N (2006a) Age-related changes in human left and right atrial conduction. J Cardiovasc Electrophysiol 17(2):120–127

    Article  Google Scholar 

  • Kojodjojo P, Kanagaratnam P, Segal OR, Hussain W, Peters NS (2006b) The effects of carbenoxolone on human myocardial conduction: a tool to investigate the role of gap junctional uncoupling in human arrhythmogenesis. J Am Coll Cardiol 48(6):1242–1249

    Article  CAS  Google Scholar 

  • Kojodjojo P, Peters NS, Davies DW, Kanagaratnam P (2007) Characterization of the electroanatomical substrate in human atrial fibrillation: the relationship between changes in atrial volume, refractoriness, wavefront propagation velocities, and AF burden. J Cardiovasc Electrophysiol 18(3):269–275

    Article  PubMed  Google Scholar 

  • Kuijpers NH, ten Eikelder HM, Bovendeerd PH, Verheule S, Arts T, Hilbers PA (2007) Mechanoelectric feedback leads to conduction slowing and block in acutely dilated atria: a modeling study of cardiac electromechanics. Am J Physiol Heart Circ Physiol 292(6):H2832–H2853

    Article  PubMed  CAS  Google Scholar 

  • Lammers WJ, Schalij MJ, Kirchhof CJ, Allessie MA (1990) Quantification of spatial inhomogeneity in conduction and initiation of reentrant atrial arrhythmias. Am J Physiol 259(4 Pt 2):H1254–H1263

    PubMed  CAS  Google Scholar 

  • Lammers WJ, Ravelli F, Disertori M, Antolini R, Furlanello F, Allessie MA (1991) Variations in human atrial flutter cycle length induced by ventricular beats: evidence of a reentrant circuit with a partially excitable gap. J Cardiovasc Electrophysiol 2(5):375–387

    Article  Google Scholar 

  • Masè M, Ravelli F (2010) Automatic reconstruction of activation and velocity maps from electro-anatomic data by radial basis functions. Conf Proc IEEE Eng Med Biol Soc 12608–2611

    Google Scholar 

  • Masè M, Glass L, Ravelli F (2008) A model for mechano-electrical feedback effects on atrial flutter interval variability. Bull Math Biol 70(5):1326–1347

    Article  PubMed  Google Scholar 

  • Masè M, Disertori M, Ravelli F (2009) Cardiorespiratory interactions in patients with atrial flutter. J Appl Physiol 106(1):29–39

    Article  PubMed  Google Scholar 

  • McNary TG, Sohn K, Taccardi B, Sachse FB (2008) Experimental and computational studies of strain-conduction velocity relationships in cardiac tissue. Prog Biophys Mol Biol 97(2–3):383–400

    Article  PubMed  CAS  Google Scholar 

  • Mills RW, Narayan SM, McCulloch AD (2008) Mechanisms of conduction slowing during myocardial stretch by ventricular volume loading in the rabbit. Am J Physiol Heart Circ Physiol 295(3):H1270–H1278

    Article  PubMed  CAS  Google Scholar 

  • Nazir SA, Lab MJ (1996) Mechanoelectric feedback and atrial arrhythmias. Cardiovasc Res 32(1):52–61

    PubMed  CAS  Google Scholar 

  • Neuberger HR, Schotten U, Verheule S, Eijsbouts S, Blaauw Y, van Hunnik A, Allessie M (2005) Development of a substrate of atrial fibrillation during chronic atrioventricular block in the goat. Circulation 111(1):30–37

    Article  PubMed  Google Scholar 

  • Neuberger HR, Schotten U, Blaauw Y, Vollmann D, Eijsbouts S, van Hunnik A, Allessie M (2006) Chronic atrial dilation, electrical remodeling, and atrial fibrillation in the goat. J Am Coll Cardiol 47(3):644–653

    Article  PubMed  Google Scholar 

  • Packer M (1985) Sudden unexpected death in patients with congestive heart failure: a second frontier. Circulation 72(4):681–685

    Article  PubMed  CAS  Google Scholar 

  • Penefsky Z, Hoffman B (1963) Effect of stretch on mechanical and electrical properties of the cardiac muscle. Am J Physiol 204:433–438

    Google Scholar 

  • Petersen P, Kastrup J, Brinch K, Godtfredsen J, Boysen G (1987) Relation between left atrial dimension and duration of atrial fibrillation. Am J Cardiol 60(4):382–384

    Article  PubMed  CAS  Google Scholar 

  • Probst P, Goldschlager N, Selzer A (1973) Left atrial size and atrial fibrillation in mitral stenosis. Factors influencing their relationship. Circulation 48(6):1282–1287

    Article  PubMed  CAS  Google Scholar 

  • Psaty BM, Manolio TA, Kuller LH, Kronmal RA, Cushman M, Fried LP, White R, Furberg CD, Rautaharju PM (1997) Incidence of and risk factors for atrial fibrillation in older adults. Circulation 96(7):2455–2461

    Article  PubMed  CAS  Google Scholar 

  • Ravelli F, Masè M, Disertori M (2008) Mechanical modulation of atrial flutter cycle length. Prog Biophys Mol Biol 97(2–3):417–434

    Article  PubMed  Google Scholar 

  • Ravelli F, Masè M, Del Greco M, Marini M, Disertori M (2011) Acute atrial dilatation slows conduction and increases AF vulnerability in the human atrium. J Cardiovasc Electrophysiol 22(4):394–401

    Article  PubMed  Google Scholar 

  • Ravelli F (2003) Mechano-electric feedback and atrial fibrillation. Progr Biophys Mol Biol 82(1–3):137–149

    Article  Google Scholar 

  • Ravelli F, Allessie M (1997) Effects of atrial dilatation on refractory period and vulnerability to atrial fibrillation in the isolated Langendorff-perfused rabbit heart. Circulation 96(5):1686–1695

    Article  PubMed  CAS  Google Scholar 

  • Ravelli F, Disertori M, Cozzi F, Antolini R, Allessie MA (1994) Ventricular beats induce variations in cycle length of rapid (type II) atrial flutter in humans. Evidence of leading circle reentry. Circulation 89(5):2107–2116

    Article  PubMed  CAS  Google Scholar 

  • Reiter MJ, Landers M, Zetelaki Z, Kirchhof CJ, Allessie MA (1997) Electrophysiological effects of acute dilatation in the isolated rabbit heart: cycle length-dependent effects on ventricular refractoriness and conduction velocity. Circulation 96(11):4050–4056

    Article  PubMed  CAS  Google Scholar 

  • Rohr S, Kucera JP, Kleber AG (1998) Slow conduction in cardiac tissue, I: effects of a reduction of excitability versus a reduction of electrical coupling on microconduction. Circ Res 83(8):781–794

    Article  PubMed  CAS  Google Scholar 

  • Rosen MR, Legato MJ, Weiss RM (1981) Developmental changes in impulse conduction in the canine heart. Am J Physiol 240(4):H546–H554

    PubMed  CAS  Google Scholar 

  • Sachse FB, Seemann G, Riedel C, Werner CD, Dössel O (2000) Modeling of the cardiac mechano-electrical feedback. Int J Bioelectromagn 2(2)

    Google Scholar 

  • Sachse FB, Seemann G, Riedel C (2002) Modeling of cardiac excitation propagation taking deformation into account. Proc BIOMAG 2002:839–841

    Google Scholar 

  • Sachse FB, Hunter GA, Weiss DL, Seemann G (2007) A framework for modeling of mechano-electrical feedback mechanisms of cardiac myocytes and tissues. Conf Proc IEEE Eng Med Biol Soc 2007:160–163

    PubMed  Google Scholar 

  • Sachse FB, Moreno AP, Seemann G, Abildskov JA (2009) A model of electrical conduction in cardiac tissue including fibroblasts. Ann Biomed Eng 37(5):874–889

    Article  PubMed  Google Scholar 

  • Sanfilippo AJ, Abascal VM, Sheehan M, Oertel LB, Harrigan P, Hughes RA, Weyman AE (1990) Atrial enlargement as a consequence of atrial fibrillation. A prospective echocardiographic study. Circulation 82(3):792–797

    Article  PubMed  CAS  Google Scholar 

  • Satoh T, Zipes DP (1996) Unequal atrial stretch in dogs increases dispersion of refractoriness conducive to developing atrial fibrillation. J Cardiovasc Electrophysiol 7(9):833–842

    Article  PubMed  CAS  Google Scholar 

  • Schotten U, Allessie M (2001) Electrical and mechanical remodeling of the atria: What are the underlying mechanisms, the time course and the clinical relevance? In: Raviele A (ed) Cardiac Arrhythmias 2001. Springer, Milan, pp 345–352

    Google Scholar 

  • Schotten U, Verheule S, Kirchhof P, Goette A (2011) Pathophysiological mechanisms of atrial fibrillation: a translational appraisal. Physiol Rev 91(1):265–325

    Article  PubMed  Google Scholar 

  • Sideris DA (1993) High blood pressure and ventricular arrhythmias. Eur Heart J 14(11):1548–1553

    Article  PubMed  CAS  Google Scholar 

  • Sideris DA, Toumanidis ST, Thodorakis M, Kostopoulos K, Tselepatiotis E, Langoura C, Stringli T, Moulopoulos SD (1994) Some observations on the mechanism of pressure related atrial fibrillation. Eur Heart J 15(11):1585–1589

    PubMed  CAS  Google Scholar 

  • Solti F, Vecsey T, Kekesi V, Juhasz-Nagy A (1989) The effect of atrial dilatation on the genesis of atrial arrhythmias. Cardiovasc Res 23(10):882–886

    Article  PubMed  CAS  Google Scholar 

  • Spach MS, Boineau JP (1997) Microfibrosis produces electrical load variations due to loss of side-to-side cell connections: a major mechanism of structural heart disease arrhythmias. PACE 20(2 Pt 2):397–413

    Article  PubMed  CAS  Google Scholar 

  • Spach MS, Dolber PC (1986) Relating extracellular potentials and their derivatives to anisotropic propagation at a microscopic level in human cardiac muscle. Evidence for electrical uncoupling of side-to-side fiber connections with increasing age. Circ Res 58(3):356–371

    Article  PubMed  CAS  Google Scholar 

  • Spach MS, Heidlage JF, Dolber PC, Barr RC (2000) Electrophysiological effects of remodeling cardiac gap junctions and cell size: experimental and model studies of normal cardiac growth. Circ Res 86(3):302–311

    Article  PubMed  CAS  Google Scholar 

  • Spach MS, Heidlage JF, Barr RC, Dolber PC (2004) Cell size and communication: role in structural and electrical development and remodeling of the heart. Heart Rhythm 1(4):500–515

    Article  PubMed  Google Scholar 

  • Spear JF, More EN (1972) Stretch-induced excitation and conduction disturbances in the isolated rat myocardium. J Electrocardiol 5(1):15–24

    Article  PubMed  CAS  Google Scholar 

  • Suarez GS, Lampert S, Ravid S, Lown B (1991) Changes in left atrial size in patients with lone atrial fibrillation. Clin Cardiol 14(8):652–656

    Article  PubMed  CAS  Google Scholar 

  • Sung D, Mills RW, Schettler J, Narayan SM, Omens JH, McCulloch AD (2003) Ventricular filling slows epicardial conduction and increases action potential duration in an optical mapping study of the isolated rabbit heart. J Cardiovasc Electrophysiol 14(7):739–749

    Article  PubMed  Google Scholar 

  • Takeuchi S, Akita T, Takagishi Y, Watanabe E, Sasano C, Honjo H, Kodama I (2006) Disorganization of gap junction distribution in dilated atria of patients with chronic atrial fibrillation. Circ J 70(5):575–582

    Article  PubMed  Google Scholar 

  • Tavi P, Laine M, Weckstrom M (1996) Effect of gadolinium on stretch-induced changes in contraction and intracellularly recorded action- and afterpotentials of rat isolated atrium. Br J Pharmacol 118(2):407–413

    Article  PubMed  CAS  Google Scholar 

  • Trayanova N, Li W, Eason J, Kohl P (2004) Effect of stretch-activated channels on defibrillation efficacy. Heart Rhythm 1(1):67–77

    Article  PubMed  Google Scholar 

  • Tse HF, Pelosi F, Oral H, Knight BP, Strickberger SA, Morady F (2001) Effects of simultaneous atrioventricular pacing on atrial refractoriness and atrial fibrillation inducibility: role of atrial mechanoelectrical feedback. J Cardiovasc Electrophysiol 12(1):43–50

    Article  PubMed  CAS  Google Scholar 

  • Vaziri SM, Larson MG, Benjamin EJ, Levy D (1994) Echocardiographic predictors of nonrheumatic atrial fibrillation. The Framingham Heart Study. Circulation 89(2):724–730

    Article  PubMed  CAS  Google Scholar 

  • Verheule S, Wilson E, Everett T, Shanbhag S, Golden C, Olgin J (2003) Alterations in atrial electrophysiology and tissue structure in a canine model of chronic atrial dilatation due to mitral regurgitation. Circulation 107(20):2615–2622

    PubMed  Google Scholar 

  • Verheule S, Wilson E, Banthia S, Everett TH, Shanbhag S, Sih HJ, Olgin J (2004) Direction-dependent conduction abnormalities in a canine model of atrial fibrillation due to chronic atrial dilatation. Am J Physiol Heart Circ Physiol 287(2):H634–H644

    Article  PubMed  Google Scholar 

  • Verheule S, Tuyls E, van Hunnik A, Kuiper M, Schotten U, Allessie M (2010) Fibrillatory conduction in the atrial free walls of goats in persistent and permanent atrial fibrillation. Circ Arrhythm Electrophysiol 3(6):590–599

    Article  PubMed  Google Scholar 

  • Weber FM, Schilling C, Seemann G, Luik A, Schmitt C, Lorenz C, Dossel O (2010) Wave-direction and conduction-velocity analysis from intracardiac electrograms-a single-shot technique. IEEE Trans Biomed Eng 57(10):2394–2401

    Article  PubMed  Google Scholar 

  • Wijffels MC, Kirchhof CJ, Dorland R, Allessie MA (1995) Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation 92(7):1954–1968

    Article  PubMed  CAS  Google Scholar 

  • Wijffels MC, Kirchhof CJ, Dorland R, Power J, Allessie MA (1997) Electrical remodeling due to atrial fibrillation in chronically instrumented conscious goats: roles of neurohumoral changes, ischemia, atrial stretch, and high rate of electrical activation. Circulation 96(10):3710–3720

    Article  PubMed  CAS  Google Scholar 

  • Zabel M, Portnoy S, Franz MR (1996) Effect of sustained load on dispersion of ventricular repolarization and conduction time in the isolated intact rabbit heart. J Cardiovasc Electrophysiol 7(1):9–16

    Article  PubMed  CAS  Google Scholar 

  • Zhang YH, Youm JB, Sung HK, Lee SH, Ryu SY, Ho WK, Earm YE (2000) Stretch-activated and background non-selective cation channels in rat atrial myocytes. J Physiol 523:607–619

    Article  PubMed  CAS  Google Scholar 

  • Zhu WX, Johnson SB, Brandt R, Burnett J, Packer DL (1997) Impact of volume loading and load reduction on ventricular refractoriness and conduction properties in canine congestive heart failure. J Am Coll Cardiol 30(3):825–833

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Michela Masè is recipient of a fellowship supported by Fondazione Cassa di Risparmio di Trento e Rovereto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavia Ravelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Masè, M., Ravelli, F. (2012). Stretch Effects on Atrial Conduction: A Potential Contributor to Arrhythmogenesis. In: Kamkin, A., Lozinsky, I. (eds) Mechanically Gated Channels and their Regulation. Mechanosensitivity in Cells and Tissues, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5073-9_11

Download citation

Publish with us

Policies and ethics