Skip to main content

Force from Lipids: A Multidisciplinary Approach to Study Bacterial Mechanosensitive Ion Channels

  • Chapter
  • First Online:
Mechanically Gated Channels and their Regulation

Abstract

Since their discovery 25 years ago mechanosensitive (MS) ion channels have been the topic of intensive scientific research. Much of what we know about structure and function of these channels derives from prokaryotic sources, and from patch clamp electrophysiology techniques and X-ray crystallography. But as technology develops so too do the methods employed to investigate the structure and function of these channels become more diverse. Techniques such as electron paramagnetic resonance (EPR) spectroscopy, Förster resonance energy transfer (FRET) imaging and nuclear magnetic resonance (NMR) spectroscopy have all been used to increase our understandings of these channels. But with every new technique come new challenges in sample preparation. Just what is the best way to prepare a MS ion channel for FRET imaging? Which mutants need to be generated? Can we incorporate a MS channel protein into an artificial lipid or will we have to perform the experiments in vivo? To help answer these questions we have documented some of the most common techniques that have been used to investigate MS ion channels to date. We discuss what these techniques have been able to tell us about MS ion channel structure, their molecular dynamics, and just how these channels are capable of responding to mechanical forces exerted from their surrounding lipid bilayer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdine A, Verhoeven MA, Park K-H, Ghazi A, Guittet E, Berrier C, Van Heijenoort C, Warschawski DE (2010) Structural study of the membrane protein MscL using cell-free expression and solid-state NMR. J Magn Reson 204(1):155–159

    PubMed  CAS  Google Scholar 

  • Akitake B, Anishkin A, Liu N, Sukharev S (2007) Straightening and sequential buckling of the pore-lining helices define the gating cycle of MscS. Nat Struct Mol Biol 14(12):1141–1149

    PubMed  CAS  Google Scholar 

  • Anishkin A, Sukharev S (2004) Water dynamics and dewetting transitions in the small mechanosensitive channel MscS. Biophys J 86(5):2883–2895

    PubMed  CAS  Google Scholar 

  • Anishkin A, Akitake B, Sukharev S (2008a) Characterization of the Resting MscS: modeling and analysis of the closed bacterial mechanosensitive channel of small conductance. Biophys J 94(4):1252–1266

    CAS  Google Scholar 

  • Anishkin A, Kamaraju K, Sukharev S (2008b) Mechanosensitive channel MscS in the open state: modeling of the transition, explicit simulations, and experimental measurements of conductance. J Gen Physiol 132(1):67–83

    CAS  Google Scholar 

  • Anishkin A, Akitake B, Kamaraju K, Chiang CS, Sukharev S (2010) Hydration properties of mechanosensitive channel pores define the energetics of gating. J Physics: Condens Matter 22(45):454120

    CAS  Google Scholar 

  • Ashcroft FM (2000) Life at the extremes: the science of survival. Harper Collins, London

    Google Scholar 

  • Bartlett JL, Levin G, Blount P (2004) An in vivo assay identifies changes in residue accessibility on mechanosensitive channel gating. PNAS 101(27):10161–10165

    PubMed  CAS  Google Scholar 

  • Bartlett JL, Li Y, Blount P (2006) Mechanosensitive channel gating Transitions resolved by functional changes upon pore modification. Biophys J 91(10):3684–3691

    PubMed  CAS  Google Scholar 

  • Bass RB, Strop P, Barclay M, Rees D (2002) Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel. Science 298:1582–1587

    PubMed  CAS  Google Scholar 

  • Batiza AF, Kuo MM-C, Yoshimura K, Kung C (2002) Gating the bacterial mechanosensitive channel MscL in vivo. PNAS 99(8):5643–5648

    PubMed  CAS  Google Scholar 

  • Battle AR, Petrov E, Pal P, Martinac B (2009) Rapid and improved reconstitution of bacterial mechanosensitive ion channel proteins MscS and MscL into liposomes using a modified sucrose method. FEBS Letters 583(2):407–412

    PubMed  CAS  Google Scholar 

  • Battle AR, Nomura T, Martinac B (2011) Understanding the role of cardiolipin on the gating behaviour of mechanosensitive ion channels. Biophys J 100(3 S1):1518

    Google Scholar 

  • Belyy V, Anishkin A, Kamaraju K, Liu N, Sukharev S (2010) The tension-transmitting ‘clutch’ in the mechanosensitive channel MscS. Nat Struct Mol Biol 17(4):451–458

    PubMed  CAS  Google Scholar 

  • Betanzos M, Chiang CS, Guy HR, Sukharev S (2002) A large iris-like expansion of a mechanosensitive channel protein induced by membrane tension. Nat Struct Mol Biol 9(9):704–710

    CAS  Google Scholar 

  • Bezanilla F, Perozo E (2002) Structural biology. Force and voltage sensors in one structure. Science 298(5598):1562–1563

    PubMed  CAS  Google Scholar 

  • Bilston LE, Mylvaganam K (2002) Molecular simulations of the large conductance mechanosensitive (MscL) channel under mechanical loading. FEBS Letters 512(1–3):185–190

    PubMed  CAS  Google Scholar 

  • Blount P, Sukharev SI, Moe PC, Schroeder MJ, Guy HR, Kung C (1996) Membrane topology and multimeric structure of a mechanosensitive channel protein of Escherichia coli. EMBO J 15(18):4798–4805

    PubMed  CAS  Google Scholar 

  • Blount P, Sukharev SI, Moe P, Martinac B, Kung C (1999) Mechanosensitive channels in bacteria. Methods Enzymol 294:458–482

    PubMed  CAS  Google Scholar 

  • Booth IR, Edwards MD, Murray E, Miller S (2005) The role of bacterial channels in cell physiology In: Kubalski A, Martinac B (eds) Bacterial ion channels and their eukaryotic homologs. ASM Press, Washington DC, pp 291–312

    Google Scholar 

  • Booth IR, Rasmussen T, Edwards MD, Black S, Rasmussen A, Bartlett W, Miller S (2011) Sensing bilayer tension: bacterial mechanosensitive channels and their gating mechanisms. Biochem Soc Trans 39(3):733–740

    PubMed  CAS  Google Scholar 

  • Borisenko V, Lougheed T, Hesse J, Füreder-Kitzmüller E, Fertig N, Behrends JC, Woolley GA, Schütz GJ (2003) Simultaneous optical and electrical recording of single gramicidin channels. Biophys J 84(1):612–622

    PubMed  CAS  Google Scholar 

  • Braganza LF, Worcester DL (1986) Structural changes in lipid bilayers and biological membranes caused by hydrostatic pressure. Biochemistry 25(23):7484–7488

    PubMed  CAS  Google Scholar 

  • Brehm P, Kullberg R, Moody-Corbett F (1984) Properties of non-junctional acetylcholine receptor channels on innervated muscle of Xenopus laevis. J Physiol 350:631–648

    PubMed  CAS  Google Scholar 

  • Chalfie M (2009) Neurosensory mechanotransduction. Nat Rev Mol Cell Biol 10(1):44–52

    PubMed  CAS  Google Scholar 

  • Chang G, Spencer RH, Lee AT, Barclay MT, Rees DC (1998) Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science 282(5397):2220–2226

    PubMed  CAS  Google Scholar 

  • Chiang CS, Anishkin A, Sukharev S (2004) Gating of the large mechanosensitive channel in situ: estimation of the spatial scale of the transition from channel population responses. Biophys J 86(5):2846–2861

    PubMed  CAS  Google Scholar 

  • Colombo G, Marrink SJ, Mark AE (2003) Simulation of MscL gating in a bilayer under stress. Biophys J 84(4):2331–2337

    PubMed  CAS  Google Scholar 

  • Corry B, Hurst AC, Pal P, Nomura T, Rigby P, Martinac B (2010) An improved open-channel structure of MscL determined from FRET confocal microscopy and simulation. J Gen Physiol 136(4):483–494

    PubMed  CAS  Google Scholar 

  • Corry B, Martinac B (2008) Bacterial mechanosensitive channels: Experiment and theory. Biochim Et Biophys Acta-Biomembranes 1778(9):1859–1870

    CAS  Google Scholar 

  • Corry B, Rigby P, Liu ZW, Martinac B (2005) Conformational changes involved in MscL channel gating measured using FRET spectroscopy. Biophys J 89(6):L49–51

    PubMed  CAS  Google Scholar 

  • Cranfield CG, Kloda A, Petrov E, Battle A, Nomura T, Rohde P, Cox C, Martinac B (2011) Techniques for investigating the mechanosensitivity of ion channels. Encycl Biophys: (In press)

    Google Scholar 

  • Criado M, Keller BU (1987) A membrane fusion strategy for single-channel recordings of membranes usually non-accessible to patch-clamp pipette electrodes. FEBS Lett 224(1):172–176

    PubMed  CAS  Google Scholar 

  • Cruickshank CC, Minchin RF, Le Dain AC, Martinac B (1997) Estimation of the pore size of the large-conductance mechanosensitive ion channel of Escherichia coli. Biophys J 73(4):1925–1931

    PubMed  CAS  Google Scholar 

  • Cui C, Smith DO, Adler J (1995) Characterization of mechanosensitive channels in Escherichia coli cytoplasmic membrane by whole-cell patch clamp recording. J Membr Biol 144(1):31–42

    PubMed  CAS  Google Scholar 

  • Delcour AH, Martinac B, Adler J, Kung C (1989) Modified reconstitution method used in Patch-Clamp studies of Escherichia-Coli ion channels. Biophys J 56(3):631–636

    PubMed  CAS  Google Scholar 

  • Edwards MD, Bartlett W, Booth IR (2008) Pore mutations of the Escherichia coli MscS channel affect desensitization but not ionic preference. Biophys J 94(8):3003–3013

    PubMed  CAS  Google Scholar 

  • Elmore DE, Dougherty DA (2003) Investigating lipid composition effects on the mechanosensitive channel of large conductance (MscL) using molecular dynamics simulations. Biophys J 85(3):1512–1524

    PubMed  CAS  Google Scholar 

  • Foo AFW, Landsberg MJ, Battle AR, Marsh BJ, Hankamer B, Martinac B (2011) Mscl Channels as nanovales for the controlled release of Liposome-Encapsulated compounds. Biophys J 100(3, Suppl 1):277a–278a

    Google Scholar 

  • Förster T (1959) Transfer mechanisms of electronic excitation. Discuss Faraday Soc 27(7):25

    Google Scholar 

  • Gallet PF, Petit JM, Maftah A, Zachowski A, Julien R (1997) Asymmetrical distribution of cardiolipin in yeast inner mitochondrial membrane triggered by carbon catabolite repression. Biochem J 324(Pt 2):627–634

    PubMed  CAS  Google Scholar 

  • Gamini R, Sotomayor M, Chipot C, Schulten K (2011) Cytoplasmic domain filter function in the mechanosensitive channel of small conductance. Biophys J 101(1):80–89

    PubMed  CAS  Google Scholar 

  • Grage SL, Keleshian AM, Turdzeladze T, Battle AR, Tay WC, May RP, Holt SA, Antoranz Contera S, Haertlein M, Moulin M, Pal P, Rohde PR, Forsyth VT, Watts A, Huang KC, Ulrich AS, Martinac B (2011) Bilayer-mediated clustering and functional interaction of MscL channels. Biophys J 100:1252–1260

    PubMed  CAS  Google Scholar 

  • Grajkowski W, Kubalski A, Koprowski P (2005) Surface changes of the mechanosensitive channel MscS upon its activation, inactivation, and closing. Biophys J 88(4):3050–3059

    PubMed  CAS  Google Scholar 

  • Guharay F, Sachs F (1984) Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J Physiol 352:685–701

    PubMed  CAS  Google Scholar 

  • Gullingsrud J, Schulten K (2004) Lipid bilayer pressure profiles and mechanosensitive channel gating. Biophys J 86(6):3496–3509

    PubMed  CAS  Google Scholar 

  • Gullingsrud J, Kosztin D, Schulten K (2001) Structural determinants of MscL gating studied by molecular dynamics simulations. Biophys J 80(5):2074–2081

    PubMed  CAS  Google Scholar 

  • Gustin MC, Zhou XL, Martinac B, Kung C (1988) A mechanosensitive ion channel in the yeast plasma membrane. Science 242(4879):762–765

    PubMed  CAS  Google Scholar 

  • Hamill OP, Martinac B (2001) Molecular basis of mechanotransduction in living cells. Physiol Rev 81(2):685–740

    PubMed  CAS  Google Scholar 

  • Harms GS, Orr G, Montal M, Thrall BD, Colson SD, Lu HP (2003) Probing conformational changes of Gramicidin ion channels by single-molecule Patch-Clamp fluorescence microscopy. Biophys J 85(3):1826–1838

    PubMed  CAS  Google Scholar 

  • Häse CC, Le Dain AC, Martinac B (1995) Purification and functional reconstitution of the recombinant large mechanosensitive ion channel (MscL) of Escherichia coli. J Biol Chem 270(31):18329–18334

    PubMed  Google Scholar 

  • Heinemann SH, Conti F, Stühmer W, Neher E (1987) Effects of hydrostatic pressure on membrane processes. Sodium channels, calcium channels, and exocytosis. J Gen Physiol 90(6):765–778

    PubMed  CAS  Google Scholar 

  • Iscla I, Levin G, Wray R, Reynolds R, Blount P (2004) Defining the physical gate of a mechanosensitive channel, MscL, by engineering metal-binding sites. Biophys J 87(5):3172–3180

    PubMed  CAS  Google Scholar 

  • Iscla I, Levin G, Wray R, Blount P (2007) Disulfide trapping the mechanosensitive channel MscL into a gating-transition state. Biophys J 92(4):1224–1232

    PubMed  CAS  Google Scholar 

  • Kloda A, Martinac B (2001a) Molecular identification of a mechanosensitive channel in archaea. Biophys J 80(1):229–240

    CAS  Google Scholar 

  • Kloda A, Martinac B (2001b) Structural and functional differences between two homologous mechanosensitive channels of Methanococcus jannaschii. EMBO J 20(8):1888–1896

    CAS  Google Scholar 

  • Kloda A, Ghazi A, Martinac B (2006) C-terminal charged cluster of MscL, RKKEE, functions as a pH sensor. Biophys J 90(6):1992–1998

    PubMed  CAS  Google Scholar 

  • Koçer A, Walko M, Meijberg W, Feringa BL (2005) A light-actuated nanovalve derived from a channel protein. Science 309(5735):755–758

    PubMed  CAS  Google Scholar 

  • Koçer A, Walko M, Bulten E, Halza E, Feringa BL, Meijberg W (2006) Rationally designed chemical modulators convert a bacterial channel protein into a pH-sensory valve. Angew Chem Int Ed 45(19):3126–3130

    CAS  Google Scholar 

  • Koeppe R, Anderson O (1996) Engineering the gramicidin channel. Annu Rev Biophys Biomol Struct 25(1):231–258

    PubMed  CAS  Google Scholar 

  • Kong YF, Shen YF, Warth TE, Ma JP (2002) Conformational pathways in the gating of Escherichia coli mechanosensitive channel. Proc Nat Acad Sci 99:5999–6004

    PubMed  CAS  Google Scholar 

  • Koprowski P, Grajkowski W, Isacoff EY, Kubalski A (2011) Genetic screen for potassium leaky small mechanosensitive channels (MscS) in Escherichia coli. J Biol Chem 286(1):877–888

    PubMed  CAS  Google Scholar 

  • Koprowski P, Kubalski A (2003) C termini of the Escherichia coli mechanosensitive ion channel (MscS) move apart upon the channel opening. J Biol Chem 278(13):11237–11245

    PubMed  CAS  Google Scholar 

  • Kubalski A, Martinac B (eds) (2005). Bacterial ion channels and their eukaryotic homologues. ASM Press, Washington, D.C.

    Google Scholar 

  • Kung C, Martinac B, Sukharev S (2010) Mechanosensitive channels in microbes. Annu Rev Microbiol 64:313–329

    PubMed  CAS  Google Scholar 

  • Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, New York

    Google Scholar 

  • Le Dain AC, Saint N, Kloda A, Ghazi A, Martinac B (1998) Mechanosensitive ion channels of the archaeon Haloferax volcanii. J Biol Chem 273(20):12116–12119

    PubMed  CAS  Google Scholar 

  • Lee AG (2011) Lipid-protein interactions. Biochem Soc Transact 39:761–766

    CAS  Google Scholar 

  • Levin G, Blount P (2004) Cysteine scanning of MscL transmembrane domains reveals residues critical for mechanosensitive channel gating. Biophys J 86(5):2862–2870

    PubMed  CAS  Google Scholar 

  • Levina N, Totemeyer S, Stokes NR, Louis P, Jones MA, Booth IR (1999) Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J 18(7):1730–1737

    PubMed  CAS  Google Scholar 

  • Li Y, Wray R, Eaton C, Blount P (2009) An open-pore structure of the mechanosensitive channel MscL derived by determining transmembrane domain interactions upon gating. FASEB J 23(7):2197–2204

    PubMed  CAS  Google Scholar 

  • Macdonald AG (1984) The effects of pressure on the molecular structure and physiological functions of cell membranes. Philos Trans R Soc London B Biol Sci 304(1118):47–68

    PubMed  CAS  Google Scholar 

  • Macdonald AG, Martinac B (2005) Effect of high hydrostatic pressure on the bacterial mechanosensitive channel MscS. Eur Biophys J 34(5):434–441

    PubMed  CAS  Google Scholar 

  • Machiyama H, Tatsumi H, Sokabe M (2009) Structural changes in the cytoplasmic domain of the mechanosensitive channel MscS during opening. Biophys J 97(4):1048–1057

    PubMed  CAS  Google Scholar 

  • Malcolm HR, Heo YY, Elmore DE, Maurer JA (2011) Defining the role of the tension sensor in the mechanosensitive channel of small conductance. Biophys J 101(2):345–352

    PubMed  CAS  Google Scholar 

  • Markin V, Shlyonsky V, Simon S, Benos D, Ismailov I (2006) Mechanosensitivity of gramicidin a channels in bulged bilayer membranes at constant tension. Biophysics 51(6):892–895

    Google Scholar 

  • Martinac B (2004) Mechanosensitive ion channels: molecules of mechanotransduction. J Cell Sci 117(Pt 12):2449–2460

    PubMed  CAS  Google Scholar 

  • Martinac B (2007) 3.5 billion years of mechanosensory transduction: structure and function of mechanosensitive channels in prokaryotes. In: Hamill OP (ed) Current topics in membranes, vol 58. Elsevier Inc., San Diego, CA, pp 25–57

    Google Scholar 

  • Martinac B, Cranfield C (2012) Shining a light on the structural dynamics of ion channels using Förster resonance energy transfer (FRET). IPSI BgD Transact Adv Res 8(1):19–24

    Google Scholar 

  • Martinac B, Hamill OP (2002) Gramicidin a channels switch between stretch activation and stretch inactivation depending on bilayer thickness. Proc Nat Acad Sci 99(7):4308–4312

    PubMed  CAS  Google Scholar 

  • Martinac B, Buechner M, Delcour AH, Adler J, Kung C (1987) Pressure-sensitive ion channel in Escherichia coli. Proc Nat Acad Sci 84(8):2297–2301

    PubMed  CAS  Google Scholar 

  • Martinac B, Adler J, Kung C (1990) Mechanosensitive ion channels of E. coli activated by amphipaths. Nature 348(6298):261–263

    PubMed  CAS  Google Scholar 

  • Martinac B, Saimi Y, Kung C (2008) Ion channels in microbes. Physiol Rev 88(4):1449–1490

    PubMed  CAS  Google Scholar 

  • Martinac B, Corry B, Hurst AC, Pal P, Nomura T, Rigby P (2010) An improved open-channel structure of MscL determined from FRET confocal microscopy and simulation. J Gen Physiol 136(4):483–494

    PubMed  Google Scholar 

  • Maurer JA, Dougherty DA (2003) Generation and evaluation of a large mutational library from the Escherichia coli mechanosensitive channel of large conductance, MscL: implications for channel gating and evolutionary design. J Biol Chem 278(23):21076–21082

    PubMed  CAS  Google Scholar 

  • Mchaourab HS, Perozo E (2000) Determination of protein folds and conformational dynamics using spin-labeling EPR spectroscopy. In: Eaton SS, Eaton GE, Berliner L (eds) Biological magnetic resonance: Distance measurements in biological systems by EPR, vol 19. Kluwer Academic/Plenum Publishers, New York, pp 155–218

    Google Scholar 

  • Meyer GR, Gullingsrud J, Schulten K, Martinac B (2006) Molecular dynamics study of MscL interactions with a curved lipid bilayer. Biophys J 91(5):1630–1637

    PubMed  CAS  Google Scholar 

  • Miller S, Bartlett W, Chandrasekaran S, Simpson S, Edwards M, Booth IR (2003a) Domain organization of the MscS mechanosensitive channel of Escherichia coli. EMBO J 22(1):36–46

    CAS  Google Scholar 

  • Miller S, Edwards MD, Ozdemir C, Booth IR (2003b) The closed structure of the MscS mechanosensitive channel. Cross-linking of single cysteine mutants. J Biol Chem 278(34):32246–32250

    CAS  Google Scholar 

  • Mitra K, Ubarretxena-Belandia I, Taguchi T, Warren G, Engelman DM (2004) Modulation of the bilayer thickness of exocytic pathway membranes by membrane proteins rather than cholesterol. Proc Nat Acad Sci 101(12):4083–4088

    PubMed  CAS  Google Scholar 

  • Moe P, Blount P (2005) Assessment of potential stimuli for mechano-dependent gating of MscL: effects of pressure, tension, and lipid headgroups. Biochemistry 44(36):12239–12244

    PubMed  CAS  Google Scholar 

  • Morris CE (1990) Mechanosensitive ion channels. J Membr Biol 113(2):93–107

    PubMed  CAS  Google Scholar 

  • Nomura T, Sokabe M, Yoshimura K (2006) Lipid-protein interaction of the MscS mechanosensitive channel examined by scanning mutagenesis. Biophys J 91(8):2874–2881

    PubMed  CAS  Google Scholar 

  • Nomura T, Sokabe M, Yoshimura K (2008) Interaction between the cytoplasmic and transmembrane domains of the mechanosensitive channel MscS. Biophys J 94(5):1638–1645

    PubMed  CAS  Google Scholar 

  • Nomura T, Battle AR, Martinac B (2011) Lipid and lyso-lipid effects on the mechanosensitivity of liposome co-reconstituted mscs and mscl. Biophys J 100(3, Supp. 1):278a

    Google Scholar 

  • Norman C, Liu Z-W, Rigby P, Raso A, Petrov Y, Martinac B (2005) Visualisation of the mechanosensitive channel of large conductance in bacteria using confocal microscopy. Eur Biophys J 34(5):396–402

    PubMed  Google Scholar 

  • Ou X, Blount P, Hoffman RJ, Kung C (1998) One face of a transmembrane helix is crucial in mechanosensitive channel gating. Proc Nat Acad Sci 95(19):11471–11475

    PubMed  CAS  Google Scholar 

  • Perozo E (2006) Gating prokaryotic mechanosensitive channels. Nat Rev Mol Cell Biol 7(2):109–119

    PubMed  CAS  Google Scholar 

  • Perozo E, Kloda A, Cortes DM, Martinac B (2001) Site-directed spin-labeling analysis of reconstituted Mscl in the closed state. J Gen Physiol 118(2):193–206

    PubMed  CAS  Google Scholar 

  • Perozo E, Cortes DM, Sompornpisut P, Kloda A, Martinac B (2002a) Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature 418(6901):942–948

    CAS  Google Scholar 

  • Perozo E, Kloda A, Cortes DM, Martinac B (2002b) Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nat Struct Mol Biol 9(9):696–703

    CAS  Google Scholar 

  • Petrov E, Rohde PR, Macdonald AG, Martinac B (2007) Effect of High Hydrostatic Pressure and Voltage on Gating of the Bacterial Mechanosensitive Channel of Small Conductance. Proc 4th Int Conf High Pressure Biosci Biotechnol 1:20–27

    Google Scholar 

  • Petrov E, Rohde PR, Martinac B (2011) Flying-patch Patch-clamp study of G22E-MscL mutant under high hydrostatic pressure. Biophys J 100(7):1635–1641

    PubMed  CAS  Google Scholar 

  • Powl AM, Lee AG (2007) Lipid effects on mechanosensitive channels. In: Owen PH (ed) Current topics in membranes, vol 58. Academic Press, New York, pp 151–178

    Google Scholar 

  • Powl AM, East JM, Lee AG (2003) Lipid−protein interactions studied by introduction of a tryptophan residue: the mechanosensitive channel MscL†. Biochemistry 42(48):14306–14317

    PubMed  CAS  Google Scholar 

  • Powl AM, East JM, Lee AG (2007) Different effects of lipid chain length on the two sides of a membrane and the lipid annulus of MscL. Biophys J 93(1):113–122

    PubMed  CAS  Google Scholar 

  • Powl AM, East JM, Lee AG (2008) Anionic phospholipids affect the rate and extent of flux through the mechanosensitive channel of large conductance MscL. Biochemistry 47(14):4317–4328

    PubMed  CAS  Google Scholar 

  • Reckel S, Sobhanifar S, Durst F, Löhr F, Shirokov VA, Dötsch V, Bernhard F (2010) Strategies for the cell-free expression of membrane proteins. In: Endo Y (ed) Cell-free protein production: methods and protocols, methods in molecular biology, vol 607. Humana Press, New York, pp 187–212

    Google Scholar 

  • Renner LD, Weibel DB (2011) Cardiolipin microdomains localize to negatively curved regions of Escherichia coli membranes. Proc Nat Acad Sci 108(15):6264–6269

    PubMed  CAS  Google Scholar 

  • Romantsov T, Battle AR, Hendel JL, Martinac B, Wood JM (2010) Protein localization in Escherichia coli cells: comparison of the cytoplasmic membrane proteins ProP, LacY, ProW, AqpZ, MscS, and MscL. J Bacteriol 192(4):912–924

    PubMed  CAS  Google Scholar 

  • Roy R, Hohng S, Ha T (2008) A practical guide to single-molecule FRET. Nat Methods 5(6):507–516

    PubMed  CAS  Google Scholar 

  • Ruthe HJ, Adler J (1985) Fusion of bacterial spheroplasts by electric fields. Biochimica et Biophysica Acta 819(1):105–113

    PubMed  CAS  Google Scholar 

  • Sachs F (2010) Stretch-activated ion channels: what are they? Physiology 25(1):50–56

    PubMed  CAS  Google Scholar 

  • Selvin PR, Hearst JE (1994) Luminescence energy transfer using a terbium chelate: improvements on fluorescence energy transfer. Proc Nat Acad Sci 91(21):10024–10028

    PubMed  CAS  Google Scholar 

  • Sheetz MP, Singer SJ (1974) Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc Nat Acad Sci 71(11):4457–4461

    PubMed  CAS  Google Scholar 

  • Sokabe M, Sachs F (1990) The structure and dynamics of patch-clamped membranes: a study using differential interference contrast light microscopy. J Cell Biol 111(2):599–606

    PubMed  CAS  Google Scholar 

  • Sokabe M, Sachs F, Jing ZQ (1991) Quantitative video microscopy of patch clamped membranes stress, strain, capacitance, and stretch channel activation. Biophys J 59(3):722–728

    PubMed  CAS  Google Scholar 

  • Sotomayor M, Schulten K (2004) Molecular dynamics study of gating in the mechanosensitive channel of small conductance MscS. Biophys J 87(5):3050–3065

    PubMed  CAS  Google Scholar 

  • Sotomayor M, Van Der Straaten TA, Ravaioli U, Schulten K (2006) Electrostatic properties of the mechanosensitive channel of small conductance MscS. Biophys J 90(10):3496–3510

    PubMed  CAS  Google Scholar 

  • Spronk SA, Elmore DE, Dougherty DA (2006) Voltage-dependent hydration and conduction properties of the hydrophobic pore of the mechanosensitive channel of small conductance. Biophys J 90(10):3555–3569

    PubMed  CAS  Google Scholar 

  • Stokes NR, Murray HD, Subramaniam C, Gourse RL, Louis P, Bartlett W, Miller S, Booth IR (2003) A role for mechanosensitive channels in survival of stationary phase: regulation of channel expression by RpoS. Proc Nat Acad Sci 100(26):15959–15964

    PubMed  CAS  Google Scholar 

  • Sukharev S (2002) Purification of the small mechanosensitive channel of Escherichia coli (MscS): the subunit structure, conduction, and gating characteristics in liposomes. Biophys J 83(1):290–298

    PubMed  CAS  Google Scholar 

  • Sukharev S, Betanzos M, Chiang CS, Guy HR (2001a) The gating mechanism of the large mechanosensitive channel MscL. Nature 409(6821):720–724

    CAS  Google Scholar 

  • Sukharev S, Durell SR, Guy HR (2001b) Structural models of the MscL gating mechanism. Biophys J 81(2):917–936

    CAS  Google Scholar 

  • Sukharev SI, Martinac B, Arshavsky VY, Kung C (1993) Two types of mechanosensitive channels in the Escherichia coli cell envelope: solubilization and functional reconstitution. Biophys J 65(1):177–183

    PubMed  CAS  Google Scholar 

  • Sukharev SI, Blount P, Martinac B, Blattner FR, Kung C (1994a) A large-conductance mechanosensitive channel in E. Coli encoded by Mscl alone. Nature 368(6468):265–268

    CAS  Google Scholar 

  • Sukharev SI, Martinac B, Blount P, Kung C (1994b) Functional reconstitution as an assay for biochemical isolation of channel proteins: Application towards the molecular identification of a bacterial mechanosensitive channel. In: Montal M (ed) Methods: A companion to methods in enzymology, vol 6. Academic Press, New York, pp 51–59

    Google Scholar 

  • Sukharev SI, Sigurdson WJ, Kung C, Sachs F (1999) Energetic and spatial parameters for gating of the bacterial large conductance mechanosensitive channel, MscL. J Gen Physiol 113(4):525–540

    PubMed  CAS  Google Scholar 

  • Summerer D, Chen S, Wu N, Deiters A, Chin JW, Schultz PG (2006) A genetically encoded fluorescent amino acid. Proc Nat Acad Sci 103(26):9785–9789

    PubMed  CAS  Google Scholar 

  • Urry DW, Goodall MC, Glickson JD, Mayers DF (1971) The gramicidin a transmembrane channel: characteristics of head-to-head dimerized π(L, D) Helices. Proc Nat Acad Sci 68(8):1907–1911

    PubMed  CAS  Google Scholar 

  • van den Bogaart G, Krasnikov V, Poolman B (2007a) Dual-color fluorescence-burst analysis to probe protein efflux through the mechanosensitive channel MscL. Biophys J 92(4):1233–1240

    Google Scholar 

  • van den Bogaart G, Mika JT, Krasnikov V, Poolman B (2007b) The lipid dependence of melittin action investigated by dual-color fluorescence burst analysis. Biophys J 93(1):154–163

    Google Scholar 

  • van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9(2):112–124

    PubMed  Google Scholar 

  • Vásquez V, Cortes DM, Furukawa H, Perozo E (2007) An optimized purification and reconstitution method for the MscS channel: strategies for spectroscopical analysis. Biochemistry 46(23):6766–6773

    PubMed  Google Scholar 

  • Vásquez V, Sotomayor M, Cordero-Morales J, Schulten K, Perozo E (2008a) A structural mechanism for MscS gating in lipid bilayers. Science 321(5893):1210–1214

    Google Scholar 

  • Vásquez V, Sotomayor M, Cortes DM, Roux B, Schulten K, Perozo E (2008b) Three-dimensional architecture of membrane-embedded MscS in the closed conformation. J Mol Biol 378(1):55–70

    Google Scholar 

  • Vora T, Corry B, Chung SH (2006) Brownian dynamics investigation into the conductance state of the MscS channel crystal structure. Biochimica Et Biophysica Acta 1758(6):730–737

    PubMed  CAS  Google Scholar 

  • Wann K, Macdonald A (1980) The effects of pressure on excitable cells. Comparative biochemistry and physiology Part A: Physiology 66(1):1–12

    Google Scholar 

  • Weiss S (2000) Measuring conformational dynamics of biomolecules by single molecule fluorescence spectroscopy. Nat Struct Biol 7(9):724

    PubMed  CAS  Google Scholar 

  • Yang L-M, Blount P (2011) Manipulating the permeation of charged compounds through the MscL nanovalve. FASEB J 25(1):428–434

    PubMed  CAS  Google Scholar 

  • Yoo J, Cui Q (2009) Curvature generation and pressure profile modulation in membrane by lysolipids: insights from coarse-grained simulations. Biophys J 97(8):2267–2276

    PubMed  CAS  Google Scholar 

  • Yoshimura K, Batiza A, Schroeder M, Blount P, Kung C (1999) Hydrophilicity of a single residue within MscL correlates with increased channel mechanosensitivity. Biophys J 77(4):1960–1972

    PubMed  CAS  Google Scholar 

  • Yoshimura K, Batiza A, Kung C (2001) Chemically charging the pore constriction opens the mechanosensitive channel MscL. Biophys J 80(5):2198–2206

    PubMed  CAS  Google Scholar 

  • Yoshimura K, Nomura T, Sokabe M (2004) Loss-of-function mutations at the rim of the funnel of mechanosensitive channel MscL. Biophys J 86(4):2113–2120

    PubMed  CAS  Google Scholar 

  • Yoshimura K, Sokabe M (2010) Mechanosensitivity of ion channels based on protein--lipid interactions. J Royal Soc Interface 7(Suppl 3):S307–S320

    CAS  Google Scholar 

Download references

Acknowledgments

The work from our laboratory discussed in the manuscript was supported by the Australian Research Council (DP0769983), the National Health & Medical Research Council of Australia (635525), and the Yamada Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles G. Cranfield .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cranfield, C. et al. (2012). Force from Lipids: A Multidisciplinary Approach to Study Bacterial Mechanosensitive Ion Channels. In: Kamkin, A., Lozinsky, I. (eds) Mechanically Gated Channels and their Regulation. Mechanosensitivity in Cells and Tissues, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5073-9_1

Download citation

Publish with us

Policies and ethics