Advertisement

Techniques

  • Erik Cambria
  • Amir Hussain
Chapter
Part of the SpringerBriefs in Cognitive Computation book series (BRIEFSCC, volume 2)

Abstract

Providing a machine with physical knowledge of how objects behave, social knowledge of how people interact, sensory knowledge of how things look and taste and psychological knowledge about the way people think, is not enough to make it intelligent. Having a database of millions of concepts is not very useful for a computer, unless it is able to conveniently use such knowledge base. Our ability to use common sense knowledge, in fact, highly depends on being able to do common sense reasoning. Machines need to be taught not just common sense knowledge itself but also strategies for handling it, retrieving it when necessary, and learning from experience.

Keywords

Semantic Network Affective Dimension Affective Valence Affective Information Common Sense Knowledge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Liu, H., Singh, P.: ConceptNet: A practical commonsense reasoning toolkit. BT Technol. J. 22(4), 211–226 (2004)CrossRefGoogle Scholar
  2. 2.
    Mueller, E.: Commonsense Reasoning. Morgan Kaufmann, San Francisco (2006)Google Scholar
  3. 3.
    Havasi, C., Speer, R., Alonso, J.: ConceptNet 3: a flexible, multilingual semantic network for common sense knowledge. RANLP, Borovets, In (2007)Google Scholar
  4. 4.
    Speer, R.: Open mind commons: an inquisitive approach to learning common sense. Workshop on Common Sense and Interactive Applications, Honolulu, In (2007)Google Scholar
  5. 5.
    Speer, R., Havasi, C.: Representing general relational knowledge in conceptnet 5. LREC, Istanbul, In (2012)Google Scholar
  6. 6.
    Plutchik, R.: The nature of emotions. Am. Sci. 89(4), 344–350 (2001)Google Scholar
  7. 7.
    Frijda, N.: The laws of emotions. Am. Psychol. 43(5), 249–358 (1988)CrossRefGoogle Scholar
  8. 8.
    Neisser, U.: Cognitive Psychology. Appleton Century Crofts, New York (1967)Google Scholar
  9. 9.
    Strapparava, C., Valitutti, A.: WordNet-affect: an affective extension of WordNet. LREC, Lisbon, In (2004)Google Scholar
  10. 10.
    Cambria, E., Hussain, A., Havasi, C., Eckl, C.: SenticSpace: visualizing opinions and sentiments in a multi-dimensional vector space. In: Setchi, R., Jordanov, I., Howlett, R., Jain, L. (eds.) Knowledge-Based and Intelligent Information and Engineering Systems. Lecture Notes in Artificial Intelligence, vol. 6279, pp. 385–393. Springer, Berlin (2010).Google Scholar
  11. 11.
    Minsky, M.: The Society of Mind. Simon and Schuster, New York (1986)Google Scholar
  12. 12.
    Cambria, E., Hussain, A., Havasi, C., Eckl, C.: AffectiveSpace: blending common sense and affective knowledge to perform emotive reasoning. In: CAEPIA, pp. 32–41. Seville (2009).Google Scholar
  13. 13.
    Fauconnier, G., Turner, M.: The Way We Think: Conceptual Blending and the Mind’s Hidden Complexities. Basic Books, New York (2003)Google Scholar
  14. 14.
    Lanczos, C.: An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Natl. Bureau Stand. 45(4), 255–282 (1950)CrossRefGoogle Scholar
  15. 15.
    Osgood, C., May, W., Miron, M.: Cross-Cultural Universals of Affective Meaning. University of Illinois Press, Urbana (1975)Google Scholar
  16. 16.
    Eckart, C., Young, G.: The approximation of one matrix by another of lower rank. Psychometrika 1(3), 211–218 (1936)CrossRefGoogle Scholar
  17. 17.
    Cambria, E., Hussain, A., Durrani, T., Havasi, C., Eckl, C., Munro, J.: Sentic computing for patient centered application. In: IEEE ICSP, pp. 1279–1282. Beijing (2010).Google Scholar
  18. 18.
    Cambria, E., Livingstone, A., Hussain, A.: The hourglass of emotions. In: Cognitive Behavioral Systems, Lecture Notes in Computer Science. Springer, Berlin Heidelberg (2012).Google Scholar
  19. 19.
    Minsky, M.: The Emotion Machine: Commonsense Thinking, Artificial Intelligence, and the Future of the Human Mind. Simon& Schuster, New York (2006)Google Scholar
  20. 20.
    James, W.: What is an emotion? Mind 34, 188–205 (1884)CrossRefGoogle Scholar
  21. 21.
    Dalgleish, T.: The emotional brain. Nat. Perspectives 5, 582–589 (2004)Google Scholar
  22. 22.
    Broca, P.: Anatomie comparée des circonvolutions cérébrales: Le grand lobe limbique. Rev. Anthropol 1, 385–498 (1878)Google Scholar
  23. 23.
    Papez, J.: A proposed mechanism of emotion. Neuropsychiatry Clin. Neurosci. 7, 103–112 (1937)Google Scholar
  24. 24.
    Maclean, P.: Psychiatric implications of physiological studies on frontotemporal portion of limbic system (visceral brain). Electroencephalogr. Clin. Neurophysiol. Suppl. 4, 407–18 (1952)CrossRefGoogle Scholar
  25. 25.
    Ledoux, J.: Synaptic Self. Penguin Books, London (2003)Google Scholar
  26. 26.
    Charles, D.: The Expression of the Emotions in Man and Animals. John Murray, London (1872)Google Scholar
  27. 27.
    Ekman, P., Dalgleish, T., Power, M.: Handbook of Cognition and Emotion. Wiley, Chichester (1999)Google Scholar
  28. 28.
    Scherer, K.: Psychological models of emotion. In: Borod, J.C. (ed.) The Neuropsychology of Emotion Pages, pp. 137–162. Oxford University, New york (2000)Google Scholar
  29. 29.
    Parrott, W.: Emotions in Social Psychology. Psychology Press, Philadelphia (2001)Google Scholar
  30. 30.
    Prinz, J.: Gut Reactions: A Perceptual Theory of Emotion. Oxford University Press, Oxford (2004)Google Scholar
  31. 31.
    Douglas-Cowie, E.: Humaine deliverable d5g: Mid term report on database exemplar progress. Technical report, Information Society Technologies, In (2006)Google Scholar
  32. 32.
    Kapoor, A., Burleson, W., Picard, R.: Automatic prediction of frustration. Int. J. Human Comput. Stud. 65, 724–736 (2007)CrossRefGoogle Scholar
  33. 33.
    Castellano, G., Kessous, L., Caridakis, G.: Multimodal emotion recognition from expressive faces, body gestures and speech. Doctoral Consortium of ACII, Lisbon, In (2007)Google Scholar
  34. 34.
    Averill, J.: A constructivist view of emotion. In: Plutchik, R., Kellerman, H. (eds.) Emotion: Theory, Research and Experience, pp. 305–339. Academic Press, New York (1980)Google Scholar
  35. 35.
    Russell, J.: Core affect and the psychological construction of emotion. Psychol. Rev. 110, 145–172 (2003)PubMedCrossRefGoogle Scholar
  36. 36.
    Osgood, C., Suci, G., Tannenbaum, P.: The Measurement of Meaning. University of Illinois Press, Urbana (1957)Google Scholar
  37. 37.
    Russell, J.: Affective space is bipolar. J. Pers. Soc. Psychol. 37, 345–356 (1979)CrossRefGoogle Scholar
  38. 38.
    Whissell, C.: The dictionary of affect in language. In: Plutchik, R., Kellerman, H. (eds.) Emotion: Theory, Research, and Experience, vol. 4, pp. 113–131. Academic Press, New York (1989)Google Scholar
  39. 39.
    Freitas, A., Castro, E.: Facial expression: the effect of the smile in the treatment of depression. empirical study with portuguese subjects. In: Emotional Expression: The Brain and The Face, pp. 127–140. University Fernando Pessoa Press, Oporto (2009).Google Scholar
  40. 40.
    Mehrabian, A.: Pleasure-arousal-dominance: a general framework for describing and measuring individual differences in temperament. Curr. Psychol. 14(4), 261–292 (1996)CrossRefGoogle Scholar
  41. 41.
    Fontaine, J., Scherer, K., Roesch, E., Ellsworth, P.: The world of emotions is not two-dimensional. Psychol. Sci. 18(12), 1050–1057 (2007)PubMedCrossRefGoogle Scholar
  42. 42.
    Cochrane, T.: Eight dimensions for the emotions. Soc. Sci. Inform. 48(3), 379–420 (2009)CrossRefGoogle Scholar
  43. 43.
    Lazarus, R.: Emotion and Adaptation. Oxford University Press, New York (1991)Google Scholar
  44. 44.
    Lewis, M.: Self-conscious emotions: embarrassment, pride, shame, and guilt. In: Handbook of Cognition and Emotion, vol. 2, pp. 623–636. Guilford Press, New York (2000).Google Scholar
  45. 45.
    Scherer, K., Shorr, A., Johnstone, T.: Appraisal Processes in Emotion: Theory, Methods. Research. Oxford University Press, Canary (2001)Google Scholar
  46. 46.
    Tracy, J., Robins, R., Tangney, J.: The Self-Conscious Emotions: Theory and Research. The Guilford Press, New York (2007)Google Scholar
  47. 47.
    Zeki, S., Romaya, J.: Neural correlates of hate. PloS one 3(10), 35–56 (2008)CrossRefGoogle Scholar
  48. 48.
    Cahill, L., McGaugh, J.: A novel demonstration of enhanced memory associated with emotional arousal. Conscious. Cogn. 4(4), 410–421 (1995)PubMedCrossRefGoogle Scholar
  49. 49.
    Bradford Cannon, W.: Bodily Changes in Pain, Hunger, Fear and Rage: An Account of Recent Researches into the Function of Emotional Excitement. Appleton Century Crofts, New York (1915)Google Scholar
  50. 50.
    Barrett, L.: Solving the emotion paradox: categorization and the experience of emotion. Pers. Soc. Psychol. Rev. 10(1), 20–46 (2006)PubMedCrossRefGoogle Scholar
  51. 51.
    Krumhuber, E., Kappas, A.: Moving smiles: the role of dynamic components for the perception of the genuineness of smiles. J. Nonverbal Behav. 29(1), 3–24 (2005)CrossRefGoogle Scholar
  52. 52.
    Lewis, M., Granic, I.: Emotion, Development, and Self-Organization: Dynamic Systems Approaches to Emotional Development. Cambridge University Press, Cambridge (2002)Google Scholar
  53. 53.
    Csikszentmihalyi, M.: Flow: The Psychology of Optimal Experience. Harper Perennial, New York (1991)Google Scholar
  54. 54.
    Cambria, E., Mazzocco, T., Hussain, A., Eckl, C.: Sentic medoids: Organizing affective common sense knowledge in a multi-dimensional vector space. In: Liu, D., Zhang, H., Polycarpou, M., Alippi, C., He, H. (eds.) Advances in Neural Networks, Lecture Notes in Computer Science, vol. 6677, pp. 601–610. Springer-Verlag, Berlin (2011)Google Scholar
  55. 55.
    Kaufman, L., Rousseeuw, P.: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley-Interscience, New York (1990)CrossRefGoogle Scholar
  56. 56.
    Hartigan, J., Wong, M.: Algorithm AS 136: a k-means clustering algorithm. J. Royal Stat. Soc. 28(1), 100–108 (1979)Google Scholar
  57. 57.
    Han, J., Kamber, M., Tung, A.: Spatial clustering methods in data mining: A survey. In: Francis, T. (ed.) Geographic. Data Mining and Knowledge Discovery. Springer Verlag, Berlin (2001)Google Scholar
  58. 58.
    MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Fifth Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297. University of California Press (1967).Google Scholar
  59. 59.
    Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979)Google Scholar
  60. 60.
    Park, H., Jun, C.: A simple and fast algorithm for k-medoids clustering. Expert Syst. Appl. 36(2), 3336–3341 (2009)CrossRefGoogle Scholar
  61. 61.
    Duda, R., Hart, P.: Pattern Classification and Scene Analysis. John Wiley, New York (1973)Google Scholar
  62. 62.
    Kirkpatrick, L., Epstein, S.: Cognitive experiential self-theory and subjective probability: further evidence for two conceptual systems. J. Pers. Soc. Psychol. 63, 534–544 (1992)PubMedCrossRefGoogle Scholar
  63. 63.
    Chaiken, S., Trope, Y.: Dual-Process Theories in Social Psychology. Guilford, New York (1999)Google Scholar
  64. 64.
    Smith, E., DeCoster, J.: Dual-process models in social and cognitive psychology: conceptual integration and links to underlying memory systems. Pers. Soc. Psychol. Rev. 4(2), 108–131 (2000)CrossRefGoogle Scholar
  65. 65.
    Epstein, S.: Cognitive-experiential self-theory of personality. In: Millon, T., Lerner, M. (eds.) Comprehensive Handbook of Psychology, p. 184. Wiley, Hoboken (2003).Google Scholar
  66. 66.
    Lieberman, M.: Social cognitive neuroscience: a review of core processes. Ann. Rev. Psychol. 58, 259–89 (2007)CrossRefGoogle Scholar
  67. 67.
    Damasio, A.: Looking for Spinoza: Joy, Sorrow, and the Feeling Brain. Harcourt, Inc., Orlando (2003)Google Scholar
  68. 68.
    Dalgleish, T., Dunn, B., Mobbs, D.: Affective neuroscience: past, present, and future. Emot. Rev. 1(4), 355–368 (2009)CrossRefGoogle Scholar
  69. 69.
    Calvo, R., D’Mello, S.: Affect detection: an interdisciplinary review of models, methods, and their applications. IEEE Trans. Affect. Comput. 1(1), 18–37 (2010)CrossRefGoogle Scholar
  70. 70.
    Ohman, A., Soares, J.: Emotional conditioning to masked stimuli: expectancies for aversive outcomes following nonre- cognized fear-relevant stimuli. J. Experim. Psychol. Gen. 127(1), 69–82 (1998)CrossRefGoogle Scholar
  71. 71.
    Calvo, M., Nummenmaa, L.: Processing of unattended emotional visual scenes. J. Experim. Psychol. Gen. 136, 347–369 (2007)CrossRefGoogle Scholar
  72. 72.
    Westen, D.: Implications of developments in cognitive neuroscience for psychoanalytic psychotherapy. Harv. Rev. Psychiatry. 10(6), 369–373 (2002)PubMedCrossRefGoogle Scholar
  73. 73.
    Cambria, E., Olsher, D., Kwok, K.: Sentic activation: A two-level affective common sense reasoning framework. AAAI, Toronto, In (2012)Google Scholar
  74. 74.
    Havasi, C., Speer, R., Holmgren, J.: Automated color selection using semantic knowledge. AAAI CSK, Arlington, In (2010)Google Scholar
  75. 75.
    Cambria, E., Mazzocco, T., Hussain, A., Durrani, T.: Switching between different ways to think: Multiple approaches to affective common sense reasoning. In: Esposito, A., Vinciarelli, A., Vicsi, K., Pelachaud, C., Nijholt, A. (eds.) Analysis of Verbal and Nonverbal Communication and Enactment: The Processing Issues, Lecture Notes in Computer Science, vol. 6800, pp. 56–69. Springer, Berlin Heidelberg (2011)CrossRefGoogle Scholar
  76. 76.
    Cambria, E., Olsher, D., Kwok, K.: Sentic panalogy: Swapping affective common sense reasoning strategies and foci. CogSci, Sapporo, In (2012)Google Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.Media LaboratoryMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of Computing ScienceUniversity of StirlingStirlingUK

Personalised recommendations