Advertisement

Data Embedding Scheme for Reversible Authentication

  • Kil-sang Yoo
  • Won-hyung Lee
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 179)

Abstract

Many watermarking techniques were proposed for medical images. However, virtually all watermarking schemes introduce some small amount of irreversible distortion, making them unsuitable for certain medical and military imaging applications. This has led to considerable recent interest in developing lossless watermarking schemes. We propose such a lossless scheme that fully recovers the original image using a secure key, incurs low computational overhead. An image is divided into a grid of blocks, and the watermark is embedded in the least significant bits of the pixels in that block. The data required for authentication is produced by an XOR operation between binary pseudo-noise sequences and a hash function computed from the image. We compare our scheme to other recently proposed lossless schemes and show that it produces less perceptible image distortion.

Keywords

Reversible watermarking authentication Lossless irreversible distortion hash function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cox, I.J., Kilian, J., Leighton, T., Shamoon, T.: Secure spread spectrum watermarking for multimedia. IEEE Trans. Image Process. 6(12), 1673–1687 (1997)CrossRefGoogle Scholar
  2. 2.
    Yoo, K.-S., Lee, W.-H.: Classification-based image watermarking using wavelet DC components. Imag. Sci. J. 58(2), 105–111Google Scholar
  3. 3.
    Vleeschouwer, C., Delaigle, J.-F., Macq, B.: Invisibility and application functionalities in perceptual watermarking – an overview. Proc. IEEE 90(1), 64–77 (2002)CrossRefGoogle Scholar
  4. 4.
    Petitcolas, F.A.P., Anderson, R.J., Kuhn, M.G.: Information hiding—a survey. Proc. IEEE 87(7), 1062–1078 (1999)CrossRefGoogle Scholar
  5. 5.
    Wong, P., Memon, N.: Secret and public key image watermarking schemes for image authentication and ownership verification. IEEE Trans. Image Process. 10, 1593–1601 (2001)MATHCrossRefGoogle Scholar
  6. 6.
    Zhang, X., Wang, S.: Statistical fragile watermarking capable of locating individual tampered pixels. IEEE Signal Process. Lett. 14(10), 727–730 (2007)CrossRefGoogle Scholar
  7. 7.
    Lu, H., Shen, R., Chung, F.-L.: Fragile watermarking scheme for image authentication. Electronics Letters 39(12), 898–900 (2003)CrossRefGoogle Scholar
  8. 8.
    He, H.-J., Zhang, J.-S., Tai, H.-M.: A Wavelet-Based Fragile Watermarking Scheme for Secure Image Authentication. In: Shi, Y.Q., Jeon, B. (eds.) IWDW 2006. LNCS, vol. 4283, pp. 422–432. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Liu, S.-H., Yao, H.-X., Gao, W., Liu, Y.-L.: An image fragile watermark scheme based on chaotic image pattern and pixel-pairs. Applied Mathematics and Computing 185(2), 869–882 (2007)MATHCrossRefGoogle Scholar
  10. 10.
    Ho, A.T.S., Zhu, X., Shen, J., Marziliano, P.: Fragile watermarking based on encoding of the zeroes of the z-transform. IEEE Trans. Inf. Forensics Security 3(3), 567–569 (2008)CrossRefGoogle Scholar
  11. 11.
    Yeh, F.H., Lee, G.C.: Content-based watermarking in image authentication allowing remedying of tampered images. Optical Engineering 45(7), 213–223 (2006)Google Scholar
  12. 12.
    Lee, G.C., Yeh, F.H.: Semifragile hybrid watermarking method for image authentication. Optical Engineering 46, 057002 (2007)Google Scholar
  13. 13.
    Yuan, H., Zhang, X.-P.: Multiscale fragile watermarking based on the Gaussian mixture model. IEEE Trans. Image Process. 15(10), 3189–3200 (2006)CrossRefGoogle Scholar
  14. 14.
    Wu, J., Zhu, B.B., Li, S., Lin, F.: A secure image authentication algorithm with pixel-level tamper localization. In: Proc. Int. Conf. Image Process., pp. 1573–1576 (2004)Google Scholar
  15. 15.
    Celik, M.U., Sharma, G., Saber, E., Tekalp, A.M.: Lossless watermarking for image authentication: a new framework and an implementation. IEEE Trans. Image Process. 15, 1042–1049 (2006)CrossRefGoogle Scholar
  16. 16.
    Stallings, W.: Cryptography and Network Security, 4th edn., pp. 317–339. Prentice Hall, New Jersey (2005)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Chung-Ang UniversitySeoulKorea

Personalised recommendations