Microbiologically Produced Carboxylic Acids Used as Building Blocks in Organic Synthesis

  • Andreas Aurich
  • Robert Specht
  • Roland A. Müller
  • Ulrich Stottmeister
  • Venelina Yovkova
  • Christina Otto
  • Martina Holz
  • Gerold Barth
  • Philipp Heretsch
  • Franziska A. Thomas
  • Dieter Sicker
  • Athanassios Giannis
Chapter
Part of the Subcellular Biochemistry book series (SCBI, volume 64)

Abstract

Oxo- and hydroxy-carboxylic acids are of special interest in organic synthesis. However, their introduction by chemical reactions tends to be troublesome especially with regard to stereoselectivity. We describe herein the biotechnological preparation of selected oxo- and hydroxycarboxylic acids under “green” conditions and their use as promising new building blocks. Thereby, our biotechnological goal was the development of process fundamentals regarding the variable use of renewable raw materials, the development of a multi purpose bioreactor and application of a pilot plant with standard equipment for organic acid production to minimize the technological effort. Furthermore the development of new product isolation procedures, with the aim of direct product recovery, capture of products or single step operation, was necessary. The application of robust and approved microorganisms, also genetically modified, capable of using a wide range of substrates as well as producing a large spectrum of products, was of special importance. Microbiologically produced acids, like 2-oxo-glutaric acid and 2-oxo-d-gluconic acid, are useful educts for the chemical synthesis of hydrophilic triazines, spiro-connected heterocycles, benzotriazines, and pyranoic amino acids. The chiral intermediate of the tricarboxylic acid cycle, (2R,3S)-isocitric acid, is another promising compound. For the first time our process provides large quantities of enantiopure trimethyl (2R,3S)-isocitrate which was used in subsequent chemical transformations to provide new chiral entities for further usage in total synthesis and pharmaceutical research.

Oxo- and hydroxy-carboxylic acids are of special interest in organic synthesis. However, their introduction by chemical reactions tends to be troublesome especially with regard to stereoselectivity. We describe herein the biotechnological preparation of selected oxo- and hydroxycarboxylic acids under “green” conditions and their use as promising new building blocks. Thereby, our biotechnological goal was the development of process fundamentals regarding the variable use of renewable raw materials, the development of a multi purpose bioreactor and application of a pilot plant with standard equipment for organic acid production to minimize the technological effort. Furthermore the development of new product isolation procedures, with the aim of direct product recovery, capture of products or single step operation, was necessary. The application of robust and approved microorganisms, also genetically modified, capable of using a wide range of substrates as well as producing a large spectrum of products, was of special importance. Microbiologically produced acids, like 2-oxo-glutaric acid and 2-oxo-d-gluconic acid, are useful educts for the chemical synthesis of hydrophilic triazines, spiro-connected heterocycles, benzotriazines, and pyranoic amino acids. The chiral intermediate of the tricarboxylic acid cycle, (2R,3S)-isocitric acid, is another promising compound. For the first time our process provides large quantities of enantiopure trimethyl (2R,3S)-isocitrate which was used in subsequent chemical transformations to provide new chiral entities for further usage in total synthesis and pharmaceutical research.

Keywords

Biotechnical cultivation Gluconobacter oxydans (2R,3S)-Isocitric acid Microorganism 2-Oxo-d-gluconic acid 2-Oxoglutaric acid Strain improvement Yarrowia lipolytica 

Abbreviations

CA

Citric acid

EDBM

Electrodialysis by bipolar membranes

ICA

(2R,3S)-Isocitric acid

2-OGA

2-Oxoglutaric acid

2-OGcA

2-Oxo-d-gluconic acid

SF

Shaking flask

STR

Stirred tank reactor

TCA cycle

Tricarboxylic acid cycle

References

  1. Akiyama S, Suzuki T, Sumino Y, Nakao Y, Fukuda H (1973) Induction and citric acid productivity of fluoroacetate-sensitive mutant strains of Candida lipolytica. Agr Biol Chem 37:879–888CrossRefGoogle Scholar
  2. Ammon K (1996) Bioprozessentwicklung am Beispiel der enzymatischen Vorstufensynthese von Vitamin C. PhD Thesis, Universität Dortmund, DortmundGoogle Scholar
  3. Andersch J (1998) On the synthesis of N-heterocycles starting from biotechnologically obtained 2-Oxo-d-gluconic acid. PhD Thesis, Universität Leipzig, LeipzigGoogle Scholar
  4. Andersch J, Sicker D (1999) Reductive cyclization of carbohydrate 2-nitrophenyl-hydrazones to chiral functionalized 1,2,4-benzotriazines and benzimidazoles. J Heterocycl Chem 36:589–594CrossRefGoogle Scholar
  5. Andersch J, Sicker D, Wilde H (1999a) Methyl d-arabino-hex-2-ulopyranosonate as a building block for spiro[1,4-benzoxazine-2,2’-pyrans]. Carbohydr Res 316:85–94CrossRefGoogle Scholar
  6. Andersch J, Sicker D, Wilde H (1999b) Synthesis of spiro[pyrido[3,2-b][1,4]oxazin-2,2’-pyrans] based upon methyl d-arabino-2-hexulopyranosonate. Tetrahedron Lett 40:57–58CrossRefGoogle Scholar
  7. Andersch J, Sicker D, Wilde H (1999c) Synthesis of spiro[1,4-benzothiazin-2,2’-pyrans] starting from methyl d-arabino-2-hexulosonate. J Heterocycl Chem 36:457–460CrossRefGoogle Scholar
  8. Andersch J, Sicker D, Wilde H (1999d) Synthesis of spiro[pyrido[3,2-b][1,4]oxazin-2,2’-pyrans] based upon methyl d-arabino-2-hexulosonate. J Heterocycl Chem 40:57–58Google Scholar
  9. Andersch J, Hennig L, Wilde H (2000) N-Glycosidation of d-arabino-hex-2-ulosonic acid. Carbohydr Res 329:693–697PubMedCrossRefGoogle Scholar
  10. Blitzke T, Hartenstein H, Sicker D, Wilde H (1993) Synthesen auf der Basis von 2-Oxoglutarsäure. III. Synthese und Reaktionen von (E)-2-Oxoglutaconsäuredimethylester. J Prakt Chem 335(8):683–686CrossRefGoogle Scholar
  11. Blitzke T, Greif D, Kempe R, Pink M, Pulst M, Sicker D, Wilde H. (1994) Synthesen auf der Basis von 2-Oxoglutarsäure. IV. Regioselektive Synthese substituierter2-(2-Methoxycarbonyl-2H-thiopyran-3-yl)glyoxylsäuremethylester. J Prakt Chem 336: 163–165Google Scholar
  12. Blitzke T, Sicker D, Wilde H (1997) Organic syntheses based on 2-oxoglutaric acid. V. Syntheses of novel 2H-1,4-benzothiazines and a 2,5-dihydro-1,5-benzothiazepine. J Heterocycl Chem 34(2):453–455CrossRefGoogle Scholar
  13. Chernyavskaya OG, Shishkanova NV, Il’chenko AP, Finogenova TV (2000) Synthesis of α-ketoglutaric acid by Yarrowia lipolyticayeast grown on ethanol. Appl Microbiol Biotechnol 53(2):152–158PubMedCrossRefGoogle Scholar
  14. Crawford TC, Andrews GC, Faubl H, Chmurny GN (1980) The structure of biologically important carbohydrates. A carbon-13 nuclear magnetic resonance study of tautomeric equilibriums in several hexulosonic acids and related compounds. J Am Chem Soc 102(7):2220–2225CrossRefGoogle Scholar
  15. Elfari M, Ha SW, Bremus C, Merfort M, Khodaverdi V, Herrmann U, Sahm H, Görisch H (2005) A Gluconobacter oxydansmutant converting glucose almost quantitatively to 5-keto-d-gluconic acid. Appl Microbiol Biotechnol 66:668–674PubMedCrossRefGoogle Scholar
  16. Ermakova IT, Shishkanova NV, Melnikova OF, Finogenova TV (1986) Properties of Candida lipolyticamutants with the modified glyoxylate cycle and their ability to produce citric and isocitric acid. I. Physiological, biochemical and cytological characteristics of mutants grown on glucose or hexadecane. Appl Microbiol Biotechnol 23(5):372–377CrossRefGoogle Scholar
  17. Finogenova TV, Shishkanova NV, Ermakova IT, Kataeva IA (1986) Properties of Candida lipolyticamutants with the modified glyoxylate cycle and their ability to produce citric and isocitric acid. II. Synthesis of citric and isocitric acid by Candida lipolytica mutants and peculiarities of their enzyme systems. Appl Microbiol Biotechnol 23:378–383CrossRefGoogle Scholar
  18. Finogenova TV, Shishkanova NV, Illarionowa WI, Losinov AB, Karklin RY, Peltzmane IZ, Jeschov VA (1989) Strain Candida lipolyticaHMM-149 as producer of isocitric acid. USSR Inventor’s Certificate SU915466, dated 23.06.1989Google Scholar
  19. Finogenova TV, Shishkanova NV, Fausek EA, Eremina SS (1991) Biosynthesis of isocitric acid from ethanol by yeasts. Appl Microbiol Biotechnol 36:231–235CrossRefGoogle Scholar
  20. Finogenova TV, Kamzolova SV, Dedyukhina EG, Shishkanova NV, Il’chenko AP, Morgunov IG, Chernyavskaya OG, Sokolov AP (2002) Biosynthesis of citric and isocitric acids from ethanol by mutant Yarrowia lipolyticaN 1 under continuous cultivation. Appl Microbiol Biotechnol 59(4–5):493–500PubMedGoogle Scholar
  21. Förster A, Jacobs K, Juretzek T, Mauersberger S, Barth G (2007) Overexpression of the ICL1 gene changes the product ratio of citric acid production by Yarrowia lipolytica. Appl Microbiol Biotechnol 77:861–869PubMedCrossRefGoogle Scholar
  22. Gupta A, Felder M, Verma V, Cullum J, Qazi GN (1999) A mutant of Gluconobacter oxydansdeficient in gluconic acid dehydrogenase. FEMS Microbiol Lett 179:501–506PubMedCrossRefGoogle Scholar
  23. Hartenstein H, Blitzke D, Sicker D, Wilde H (1993) Synthesen auf der Basis von 2-Oxoglutarsäure. II. Zur Synthese von Heterocyclen durch Reaktionen von 3-Brom-2-oxoglutarsäuredimethylester mit Binucleophilen. J Prakt Chem 335(2):176–180CrossRefGoogle Scholar
  24. Heretsch P, Thomas F, Aurich A, Krautscheid H, Sicker D, Giannis A (2008) Syntheses with a chiral building block from the citric acid cycle: (2R,3S)-isocitric acid by fermentation of sunflower oil. Angew Chem Int Ed 47:1958–1960CrossRefGoogle Scholar
  25. Hölscher T, Schleyer U, Merfort M, Bringer-Meyer S, Görisch H, Sahm H (2009) Glucose oxidation and PQQ-dependent dehydrogenases in Gluconobacter oxydans. J Mol Microbiol Biotechnol 176:6–13Google Scholar
  26. Holz M (2011) Gentechnische Optimierung der Hefe Yarrowia lipolyticazur biotechnologischen Produktion von Succinat. PhD Thesis, Dresden University of Technology, DresdenGoogle Scholar
  27. Holz M, Otto C, Kretzschmar A, Yovkova V, Aurich A, Pötter M, Marx A, Barth G (2009) Overexpression of alpha-ketoglutarate dehydrogenase in Yarrowia lipolyticaand its effect on production of organic acids. Appl Microbiol Biotechnol 89:1519–1526CrossRefGoogle Scholar
  28. Huang HJ, Liu LM, Li Y, Du GC, Chen J (2006) Redirecting carbon flux in Torulopsis glabratafrom pyruvate to alpha-ketoglutaric acid by changing metabolic co-factors. Biotechnol Lett 28:95–98PubMedCrossRefGoogle Scholar
  29. Huang C, Xu T, Zhang Y, Xue Y, Chen G (2007) Application of electrodialysis to the production of organic acids: state-of-the-art and recent developments. J Memb Sci 288(1–2):1–12CrossRefGoogle Scholar
  30. Il’chenko AP, Chernyavskaya OG, Shishkanova NV, Finogenova TV (2003) Biochemical characterization of the yeast Yarrowia lipolyticaoverproducing carboxylic acids from ethanol: nitrogen metabolism enzymes. Microbiol 72(4):418–422CrossRefGoogle Scholar
  31. Internetchemistry (2008) Kilogram quantities at last! http://www.internetchemie.info/news/2008/feb08/isoctric-acid.html. Accessed 20 Feb 2012
  32. Kamzolova SV, Finogenova TV, Lunina YN, Perevoznikova OA, Minachova LN, Morgunov IG (2007) Characteristics of the growth on rapeseed oil and synthesis of citric and isocitric acids by Yarrowia lipolyticayeasts. Microbiol 76:20–24CrossRefGoogle Scholar
  33. Kamzolova SV, Finogenova TV, Morgunov IG (2008) Microbiological production of citric and isocitric acids from sunflower oil. Food Technol Biotechnol 46:51–59Google Scholar
  34. Katsuki T, Sharpless KB (1980) The first practical method for asymmetric epoxidation. J Am Chem Soc 102(18):5974–5976CrossRefGoogle Scholar
  35. Khodja M, Schwesinger H, Sicker D, Wilde H (1994) Synthesis of 3,4-dihydro-pyridazino[1,6-a]benzimidazoles by reductive cyclization of dialkyl 2-(2-nitrophenyl-hydrazono) glutarates. Heterocycles 37:401–411CrossRefGoogle Scholar
  36. Kirrbach S, Schnelle R-R, Stottmeister U, Hauptmann S, Mann G, Wilde H, Sicker D (1992) Optimierte Synthesen für Methyl- und Natrium-2-oxo-d-gluconat als Synthesebausteine. J Prakt Chem 334:537–539CrossRefGoogle Scholar
  37. Liang N, Wang M, Liu L, Du G, Chen J (2008) Enhancing alpha ketoglutaric acid production in Torulopsis glabrata: increase of acetyl-CoA availability. Wei Sheng Wu Xue Bao 48:874–878PubMedGoogle Scholar
  38. Liu L, Li Y, Zhu Y, Du G, Chen J (2007) Redistribution of carbon flux in Torulopsis glabrataby altering vitamin and calcium level. Metab Eng 9:21–29PubMedCrossRefGoogle Scholar
  39. Lockwood LB, Stodola FH (1946) Preliminary studies on the production of α-ketoglutaric acid by Pseudomonas fluorescens. J Biol Chem 164:81–83PubMedGoogle Scholar
  40. Maldonado P, Desmarquest J-P, Gaillardin C, Binet D (1973) Process for getting diploid Candida lipolyticastrains for α-ketoglutarate fermentation. US Patent 3930946, Institute Francaise du Petrole, FranceGoogle Scholar
  41. Manufacturingchemist (2008) White biotechnology for greener chemistry. http://www.manufacturingchemist.com/technical/article_page/White_biotechnology_for_greener_chemistry/40815. Accessed 20 Feb 2012
  42. Medicalnewstoday (2008) Isocitric acid from fermentation of sunflower oil: a new building block for pharma? http://www.medicalnewstoday.com/articles/96266.php. Accessed 20 Feb 2012
  43. Misenheimer TJ, Anderson RF, Lagoda AA, Tyler DD (1965) Production of 2-ketogluconic acid by Serratia marcescens. Appl Environ Microbiol 13:393–396Google Scholar
  44. Moresi M, Sappino F (2000) Electrodialytic recovery of some fermentation products from model solutions: techno-economic feasibility study. J Memb Sci 164:129–140CrossRefGoogle Scholar
  45. Nakahara T, Kaimaktchiev AC, Oogaki-Chino M, Uchida Y, Tabuchi T (1987) Isocitric acid production from n-alkanes by Candida catenulata. Agric Biol Chem 51:2111–2116CrossRefGoogle Scholar
  46. Novalic S, Jagschits F, Okwor J, Kulbe KD (1995) Behaviour of citric acid during electrodialysis. J Memb Sci 108:201–205CrossRefGoogle Scholar
  47. Oogaki M, Inoue M, Kaimaktchiev AC, Nakahara T, Tabuchi T (1983) Production of isocitric acid from glucose by Candida ravautii. Agric Biol Chem 48:789–795CrossRefGoogle Scholar
  48. Otto C (2010) Gezielte Beeinflussung der Ausbeute und des Nebenproduktspektrums der α-Ketoglutarat-Synthese in Yarrowia lipolytic mittels “metabolic engineering”. PhD Thesis, Dresden University of Technology, DresdenGoogle Scholar
  49. Otto C, Yovkova V, Barth G (2011) Overproduction and secretion of α-ketoglutaric acid by microorganisms. Appl Microbiol Biotechnol 92:689–695PubMedCrossRefGoogle Scholar
  50. Otto C, Yovkova V, Aurich A, Mauersberger S, Barth G (2012) Variation of the by-product spectrum during α-ketoglutaric acid production from raw glycerol by overexpression of fumarase and pyruvate carboxylase in Yarrowia lipolytica. Appl Microbiol Biotechnol. doi:10.1007/s00253-012-4085-1
  51. Physorg (2012) Isocitric acid from fermentation of sunflower oil – a new building block for pharma? http://www.physorg.com/news121343388.html. Accessed 20 Feb 2012.
  52. Prust C, Hoffmeister M, Liesegang H, Wiezer A, Fricke WF, Ehrenreich A et al (2005) Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat Biotechnol 23:195–200PubMedCrossRefGoogle Scholar
  53. Rapp HJ (1995) Die Elektrodialyse mit bipolaren Membranen Theorie und Anwendung. PhD Thesis, Universität Stuttgart, StuttgartGoogle Scholar
  54. Sakaguchi K, Abe S, Beppu T (1960) Method of producing allo-isocitric acid by fermentation. US Patent 2949404 16.08.1960Google Scholar
  55. Schmidt S, Teich L, Khodja M, Sicker D (2005a) Synthesis of pyranoid sugar α-amino acid derivatives from 2-oxo-d-gluconic acid. Lett Org Chem 2:165–171CrossRefGoogle Scholar
  56. Schmidt S, Wilde H, Hunger J, Sicker D (2005b) Synthese furanoider Zuckeraminosäuren ausgehend von fermentativ gewonnener 2-Oxo-d-gluconsäure. Z Naturforsch B: J Chem Sci 60:1168–1174Google Scholar
  57. Schwesinger H, Dalski A, Sicker D, Wilde H, Mann G (1992) Synthesen auf der Basis von 2-Oxoglutarsäure. I. Synthese substituierter 2-Nitrophenylhydrazone von 2-Oxodicarbonsäureestern und Untersuchung ihres Tautomerie- und Absorptionsverhaltens. J Prakt Chem 334:257–264CrossRefGoogle Scholar
  58. Specht R (2004) Produktion von 2-Oxoglutarsäure aus Pflanzenölen unter der Verwendung der Hefeart Yarrowia lipolytica. Diplomarbeit, Technische Universität Dresden, DresdenGoogle Scholar
  59. Stottmeister U, Hoppe K (1991) Organische Genuss-Säuren. In: Lebensmittel-Biotechnologie. H. Ruttloff (Ed.) Akademie Verlag Berlin, pp 516–557Google Scholar
  60. Stottmeister U, Behrens U, Weißbrodt E, Barth G, Franke-Rinker D, Schulze E (1982) Nutzung von Paraffinen und anderen Nichtkohlenhydrat-Kohlenstoffquellen zur mikrobiellen Citronensauresynthese. Z Allg Mikrobiol 22:399–424PubMedCrossRefGoogle Scholar
  61. Stottmeister U, Puschendorf K, Thiersch A, Berger R, Düresch R, Richter H, Schmidt JST, Iske U, Jechorek M, Uhlig H (1990) Verfahren zur Gewinnung von 2-Oxogluconsäure mittels Bakterien, DD 278 362 A1 IBT/UFZGoogle Scholar
  62. Stottmeister U, Schoenfelder M, Wilde H, Sicker D, Andersch J (2001) Novel 3-substituted 1,2,4-benzotriazines. A method for their production and the use thereof for the treatment and prophylaxis of tumours, EP20000985213.Google Scholar
  63. Stottmeister U, Aurich A, Wilde H, Andersch J, Schmidt S, Sicker D (2005) White biotechnology for green chemistry: fermentative 2-oxocarboxylic acids as novel building blocks for subsequent chemical syntheses. J Ind Microbiol Biotechnol 32:651–664PubMedCrossRefGoogle Scholar
  64. Stubbs JJ, Lockwood LB, Roe ET, Tabenkin B, Ward GE (1940) Ketogluconic acid from glucose. Ind Eng Chem 32:1626–1631CrossRefGoogle Scholar
  65. Tabaka K, Kimura K, Yamaguchi Y (1969) Process for producing l-glutamic acid and α-ketoglutaric acid. US Patent 3450599, Kyowa Hakko Kogyo, TokyoGoogle Scholar
  66. Tongwen X, Weihua Y (2002) Citric acid production by electrodialysis with bipolar membranes. Chem Eng Process 41(6):519–524CrossRefGoogle Scholar
  67. Tsugawa, R., Nakase, T., Yamashita, K (1969) Production of α-ketoglutaric acid by fermentation of hydrocarbons, US Patent 3616213 Ajinomoto Co. Inc., TokyoGoogle Scholar
  68. Verseck S, Karau A, Weber M (2007) Fermentative Herstellung von alpha-Ketoglutarsäure. DE 10 2007 051 451.6, Evonik Degussa GmbH, EssenGoogle Scholar
  69. Verseck S, Karau A, Weber M (2009) Fermentative production of alpha-ketoglutaric acid. WO2009053489, Evonik Degussa GmbH, EssenGoogle Scholar
  70. Vickery HB (1962) A suggested new nomenclature for the isomers of isocitric acid. J Biol Chem 237:1739–41PubMedGoogle Scholar
  71. Vogelbusch (2012) Biocommodities. http://www.vogelbusch-biocommodities.com/en/index.php. Accessed 20 Feb 2012
  72. Weißbrodt E, Barth G, Weber H, Stottmeister U, Düresch R, Richter P (1988) Production of 2-oxoglutaric acid by yeasts. Patent DD 267 999 IBT/UFZ, dated 06.01.1988Google Scholar
  73. Yovkova V (2011) Genetische Optimierung der Hefe Yarrowia lipolytica für die biotechnologische Gewinnung von α-Ketoglutarsäure. PhD Thesis, Dresden University of Technology, DresdenGoogle Scholar
  74. Zhang D, Liang N, Shi Z, Liu L, Chen J, Du G (2009) Enhancement of α-ketoglutarate production in Torulopsis glabrata: redistribution of carbon flux from pyruvate to α-ketoglutarate. Biotechnol Bioproc Eng 14:134–139CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Andreas Aurich
    • 1
  • Robert Specht
    • 1
  • Roland A. Müller
    • 1
  • Ulrich Stottmeister
    • 1
  • Venelina Yovkova
    • 2
  • Christina Otto
    • 2
  • Martina Holz
    • 2
  • Gerold Barth
    • 2
  • Philipp Heretsch
    • 3
  • Franziska A. Thomas
    • 3
  • Dieter Sicker
    • 3
  • Athanassios Giannis
    • 3
  1. 1.Helmholtz-Centre for Environmental Research – UFZLeipzigGermany
  2. 2.Institute of MicrobiologyDresden University of TechnologyDresdenGermany
  3. 3.Institute of Organic ChemistryUniversity of LeipzigLeipzigGermany

Personalised recommendations