Skip to main content

An Ionization Method Based on Photoelectron Induced Thermal Electron Generation: capillary Atmospheric Pressure Electron Capture Ionization (cAPECI)

  • 1437 Accesses

Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)

Abstract

A novel method for atmospheric pressure ionization of compounds with high electron affinity (e.g., nitroaromatic compounds) or gas phase acidity (e.g., phenols) is reported. The method is based on the generation of thermal electrons by the photoelectric effect, followed by electron capture of oxygen in air or, within pure nitrogen, of the analyte itself. In the presence of oxygen, ionization of the analyte is accomplished via charge transfer or proton abstraction by the strong gas phase base O 2 . In terms of least invasive sample structure, the interaction of UV-light with metals represents a very clean method for the generation of thermal electrons at atmospheric pressure. This leads to a soft and selective ionization method, generating exclusively negative ions. The implementation of the ionization stage within a fast flowing gas system additionally reduces the retention time of the ionized sample within the high pressure region of the mass spectrometer. Therefore ion transformation processes are reduced and the mass spectrum corresponds more closely to the neutral analyte distribution than for ionization methods operating in conventional ion sources.

Keywords

  • Nitroaromatic
  • Photoelectric effect
  • Explosive detection
  • Mass spectrometry
  • electron capture
  • Ionization
  • cAPECI

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-007-5034-0_19
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-94-007-5034-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.00
Price excludes VAT (USA)
Hardcover Book
USD   279.00
Price excludes VAT (USA)
Fig. 19.1
Fig. 19.2

References

  1. Atkinson R, Aschmann SM, Arey J (1992) Reactions of hydroxyl and nitrogen trioxide radicals with phenol, cresols, and 2-nitrophenol at 296 ± 2 K. Environ Sci Technol 26:1397–1403

    CrossRef  CAS  Google Scholar 

  2. Bejan I, Abd El Aal Y, Barnes I, Benter T, Bohn B, Wiesen P, Kleffmann J (2006) The photolysis of ortho-nitrophenols: a new gas phase source of HONO. Phys Chem Chem Phys 8:2028–2035

    CrossRef  CAS  Google Scholar 

  3. Bolzacchini E, Bruschi M, Hjorth J, Meinardi S, Orlandi M, Rindone B, Rosenbohm E (2001) Gas-phase reaction of phenol with NO3. Environ Sci Technol 35:1791–1797

    CrossRef  CAS  Google Scholar 

  4. Brockmann KJ, Wissdorf W, Hyzak L, Kersten H, Mueller D, Brachthaeuser Y, Benter T (2010) Fundamental characterization of ion transfer capillaries used in atmospheric pressure ionization sourced. In: 58th ASMS conference on mass spectrometry and allied topics, Salt Lake City, UT, USA

    Google Scholar 

  5. Covey TR, Thomson BA, Schneider BB (2009) Atmospheric pressure ion sources. Mass Spectrom Rev 28:870–897

    CrossRef  CAS  Google Scholar 

  6. Dennington R, Keith T, Millam J (2007) GaussView; 4.1. Semichem, Inc, Shawnee Mission

    Google Scholar 

  7. Ewing RG, Atkinson DA, Eiceman GA, Ewing GJ (2001) A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds. Talanta 54:515–529

    CrossRef  CAS  Google Scholar 

  8. Frisch MJ et al (2003) Gaussian 03W; revision C.02. Gaussian, Inc, Wallingford

    Google Scholar 

  9. Graus M, Müller M, Hansel A (2010) High resolution PTR-TOF: quantification and formula confirmation of VOC in real time. J Am Soc Mass Spectrom 21:1037–1044

    CrossRef  CAS  Google Scholar 

  10. Grosjean D (1984) Atmospheric reactions of ortho cresol: gas phase and aerosol products. Atmos Environ 18:1641–1652

    CrossRef  CAS  Google Scholar 

  11. Grosjean D (1991) Ambient levels of formaldehyde, acetaldehyde and formic acid in southern California: results of a one-year baseline study. Environ Sci Technol 25:710–715

    CrossRef  CAS  Google Scholar 

  12. Gross M, Caprioli RM (eds) (2007) The encyclopedia of mass spectrometry, vol 6. Elsevier, Oxford/Großbritannien

    Google Scholar 

  13. Harrison MAJ, Barra S, Borghesi D, Vione D, Arsene C, Olariu RI (2005) Nitrated phenols in the atmosphere: a review. Atmos Environ 39:231–248

    CrossRef  CAS  Google Scholar 

  14. Hong F (2004) Photoemission applied to ion mobility spectrometry to detect explosives at ambient pressure and room temperature. Dissertation, North Dakota State University

    Google Scholar 

  15. Jagiella S, Zabel F (2007) Reaction of phenylperoxy radicals with NO2 at 298 K. Phys Chem Chem Phys 9:5036–5051

    CrossRef  CAS  Google Scholar 

  16. Kaiser H, Specker H (1956) Bewertung und Vergleich von Analysenverfahren. Fresenius J Anal Chem 149:46–66

    CrossRef  CAS  Google Scholar 

  17. Kawai A, Goto S, Matsumoto Y, Matsushita H (1987) Mutagenicity of aliphatic and aromatic nitro compounds. Industrial materials and related compounds. Jpn J Ind Health 29:34–54

    CAS  Google Scholar 

  18. Kawamura K, Kaplan IR (1986) Biogenic and anthropogenic organic compounds in rain and snow samples collected in southern california. Atmos Environ 20:115–124

    CrossRef  CAS  Google Scholar 

  19. Kersten H, Funcke V, Lorenz M, Brockmann KJ, Benter T, O’Brien R (2009) Evidence of neutral radical induced analyte ion transformations in APPI and near-VUV APLI. J Am Soc Mass Spectrom 20:1868–1880

    CrossRef  CAS  Google Scholar 

  20. Kersten H, Derpmann V, Barnes I, Brockmann K, O’Brien R, Benter T (2011) A novel APPI-MS setup for in situ degradation product studies of atmospherically relevant compounds: capillary Atmospheric Pressure Photo Ionization (cAPPI). J Am Soc Mass Spectrom. doi: 10.1007/s13361-011-0212-y

    Google Scholar 

  21. Liang C-W, Lee YT, Chen C-H, Wang Y-S (2010) Ionizing nonvolatile samples using laser desorption proton-transfer reaction with cluster reagent ions. Int J Mass Spectrom 291:61–66

    CrossRef  CAS  Google Scholar 

  22. Lide DR (ed) (2007–2008) CRC handbook of chemistry and physics, 88tth edn. CRC Press, Boca Raton

    Google Scholar 

  23. Lindinger W, Hansel A, Jordan A (1998) On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research. Int J Mass Spectrom 173:191–241

    CrossRef  CAS  Google Scholar 

  24. Linstrom PJ, Mallard WG (eds) (2011) National Institute of Standards and Technology, Gaithersburg, MD. http://webbook.nist.gov. Retrieved 21 Dec 2011

  25. Lüttke J, Scheer V, Levsen K, Wünsch G, Neil Cape J, Hargreaves KJ, Storeton-West RL, Acker K, Wieprecht W, Jones B (1997) Occurrence and formation of nitrated phenols in and out of cloud. Atmos Environ 31:2637–2648

    CrossRef  Google Scholar 

  26. McEwen CN, Larsen BS (2009) Ionization mechanisms related to negative ion APPI, APCI, and DART. J Am Soc Mass Spectrom 20:1518–1521

    CrossRef  CAS  Google Scholar 

  27. Olariu RI, Klotz B, Barnes I, Becker KH, Mocanu R (2002) FT-IR study of the ring-retaining products from the reaction of OH radicals with phenol, o-, m-, and p-cresol. Atmos Environ 36:3685–3697

    CrossRef  CAS  Google Scholar 

  28. Purohit V, Basu AK (2000) Mutagenicity of nitroaromatic compounds. Chem Res Toxicol 13:673–692

    CrossRef  CAS  Google Scholar 

  29. Rippen G, Zietz E, Frank R, Knacker T, Klöpffer W (1987) Do airborne nitrophenols contribute to forest decline? Environ Tech Lett 8:475–482

    CrossRef  CAS  Google Scholar 

  30. Shimamori H, Fessenden RW (1981) Thermal electron attach ment to oxygen and van der Waals molecules containing oxygen. J Chem Phys 74:453–466

    CrossRef  CAS  Google Scholar 

  31. Song L, Wellman AD, Yao H, Bartmess JE (2007) Negative ion-atmospheric pressure photoionization: electron capture, dissociative electron capture, proton transfer, and anion attachment. J Am Soc Mass Spectrom 18:1789–1798

    CrossRef  CAS  Google Scholar 

  32. Voznakova Z, Podehradska J, Kohlickova M (1996) Determination of nitrophenols in soil. Chemosphere 33:285–291

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Benter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Derpmann, V. et al. (2013). An Ionization Method Based on Photoelectron Induced Thermal Electron Generation: capillary Atmospheric Pressure Electron Capture Ionization (cAPECI). In: Barnes, I., Rudziński, K. (eds) Disposal of Dangerous Chemicals in Urban Areas and Mega Cities. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5034-0_19

Download citation