Advertisement

Chemistry of Organic Sulfates and Nitrates in the Urban Atmosphere

  • Rafal SzmigielskiEmail author
Conference paper
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)

Abstract

The paper overviews the current state of knowledge regarding the origin, formation mechanisms, properties and atmospheric implications of organic sulfates (organosulfates, OS) and organic nitrates (organonitrates, ON). Based on field measurements and smog chamber experiments, these esters have been proved to be relevant components of ambient atmospheric aerosols. Despite the fact that chemical knowledge on esters of sulfuric and nitric acids with simple alcohols has been well documented since the advent of classical organic chemistry (a second part of the nineteenth century), it has been only a recent decade since the discovery of these species in the airborne particulate matter attracted attention of the atmospheric community owing to their enhanced polarity and hydrophilic properties. The advances in the field of analytical instrumentations, chiefly in mass spectrometry, made it possible to provide a detailed characterization of organo-sulfates/nitrates at the molecular level. The composition of aerosol samples collected from various field campaigns showed clearly that organo-sulfates/nitrates may serve as excellent molecular tracers for anthropogenically affected aerosol sources, as it is the case of urban atmosphere.

Keywords

Organosulfates (OS) Organonitrates (ON) Inorganic pollutants Ambient Aerosol Urban air quality Atmospheric sciences Mass spectrometry 

Notes

Acknowledgment

The research of Dr. Rafal Szmigielski at the Institute of Physical Chemistry, Polish Academy of Sciences was allowed through the funding from a Marie Curie Reintegration fellowship of the European Community’s Seventh Framework Programme ([FP7/2007–2013]) under grant agreement n° PERG05-GA-2009-249160. The author would like to acknowledge the invitation from Dr. Ian Barnes, Prof. Alia Shakour and Dr. Krzysztof Rudzinski to the NATO symposium on disposal of dangerous chemicals in urban areas and mega cities: oxides and acids of nitrogen – their role in the oxidation capacity of urban areas and mega cities and the opportunity to present a plenary lecture.

References

  1. 1.
    Altieri KE, Turpin BJ, Seitzinger SP (2009) Composition of dissolved organic nitrogen in continental precipitation investigated by ultra-high resolution FT-ICR mass spectrometry. Environ Sci Technol 43(18):6950–6955CrossRefGoogle Scholar
  2. 2.
    Arneth A, Monson RK, Schurgers U, Niinemets G, Palmer PI (2008) Why are estimates of global terrestrial isoprene emissions so similar (and why is this not so for monoterpenes)? Atmos Chem Phys 8:4605–4620CrossRefGoogle Scholar
  3. 3.
    Attygalle AB, García-Rubio S, Ta J, Meinwald J (2001) Collisionally-induced dissociation mass spectra of organic sulfate anions. J Chem Soc Perkin Trans 2:498–506Google Scholar
  4. 4.
    Ballschmiter K (2002) A marine source for alkyl nitrates. Science 297:1127–1128CrossRefGoogle Scholar
  5. 5.
    Beine HJ, Amoroso A, Esposito G, Sparapani R, Ianniello A, Georgiadis T, Nardino M, Bonasoni P, Cristofanelli P, Dominé F (2005) Deposition of atmospheric nitrous acid on alkaline snow surfaces. Geophys Res Lett 32:L10808CrossRefGoogle Scholar
  6. 6.
    Boschan R, Merrow RT, Van Dolah RW (1955) The chemistry of nitrate esters. Chem Rev 55:485–510CrossRefGoogle Scholar
  7. 7.
    Buxton GV, Salmon GA, Williams JE (2000) The reactivity of biogenic monoterpenes towards OH and SO4-radicals in de-oxygenated acidic solution. J Atmos Chem 36:111–134CrossRefGoogle Scholar
  8. 8.
    Chan MN, Surratt JD, Claeys M, Edgerton ES, Tanner RL, Shaw SL, Zheng M, Knipping EM, Eddingsaas NC, Wennberg PO, Seinfeld JH (2010) Characterization and quantification of isoprene-derived epoxydiols in ambient aerosol in the Southeastern United States. Environ Sci Technol 44(12):4590–4596CrossRefGoogle Scholar
  9. 9.
    Claeys M, Wang W, Vermeylen R, Kourtchev I, Chib X, Farhat Y, Surratt JD, Gómez-González Y, Sciare J, Maenhaut W (2010) Chemical characterisation of marine aerosol at Amsterdam Island during the austral summer of 2006–2007. Aerosol Sci 41:13–22CrossRefGoogle Scholar
  10. 10.
    Darer AI, Cole-Filipiak NC, O’Connor AE, Elrod MJ (2011) Formation and stability of atmospherically relevant isoprene-derived organosulfates and organonitrates. Environ Sci Technol 45(5):1895–1902CrossRefGoogle Scholar
  11. 11.
    Day DA, Liu S, Russell LM, Ziemann PJ (2010) Organonitrate group concentrations in submicron particles with high nitrate and organic fractions in coastal southern California. Atmos Environ 44(16):1970–1979CrossRefGoogle Scholar
  12. 12.
    Eddingsaas NC, VanderVelde DG, Wennberg PO (2010) Kinetics and products of the acid-catalyzed ring-opening of atmospherically relevant butyl epoxy alcohols. J Phys Chem A 114:8106–8113CrossRefGoogle Scholar
  13. 13.
    Farmer DK, Matsunaga A, Docherty KS, Surratt JD, Seinfeld JH, Ziemann PJ, Jimenez JL (2010) Response of an aerosol mass spectrometer to organonitrates and organosulfates and implications for atmospheric chemistry. Proc Natl Acad Sci USA 107:6670–6675CrossRefGoogle Scholar
  14. 14.
    Francisco MA, Krylowski J (2005) Chemistry of organic nitrates: thermal chemistry of linear and branched organic nitrates. Ind Eng Chem Res 44:5439–5446CrossRefGoogle Scholar
  15. 15.
    Froyd KD, Murphy SM, Murphy DM, de Gouw JA, Eddingsaas NC, Wennberg PO (2010) Contribution of isoprene-derived organosulfates to free tropospheric aerosol mass. Proc Natl Acad Sci USA 107(50):21360–21365CrossRefGoogle Scholar
  16. 16.
    Goldstein AH, Galbally I (2007) Known and unexplored organic constituents in the Earth’s atmosphere. Environ Sci Technol 41:1514–1521CrossRefGoogle Scholar
  17. 17.
    Gomez-Gonzalez Y, Surratt JD, Cuyckens F, Szmigielski R, Vermeylen R, Jaoui M, Lewandowski M, Offenberg JH, Kleindienst TE, Edney EO, Blockhuys F, Van Alsenoy C, Maenhaut W, Claeys M (2008) Characterization of organosulfates from the photooxidation of isoprene and unsaturated fatty acids in ambient aerosol using liquid chromatography/(-) electrospray ionization mass spectrometry. J Mass Spectrom 43(3):371–382CrossRefGoogle Scholar
  18. 18.
    Graber ER, Rudich Y (2006) Atmospheric HULIS: how humic-like are they? A comprehensive and critical review. Atmos Chem Phys 6:729–753CrossRefGoogle Scholar
  19. 19.
    Grgic I, Dovzan A, Bercic G, Hudnik V (1998) The effect of atmospheric organic compounds on the Fe-catalyzed S(IV) autoxidation in aqueous solution. J Atmos Chem 29:315–337CrossRefGoogle Scholar
  20. 20.
    Grgic I, Losno R, Pasiuk-Bronikowska W (2003) EUROTRAC – II final report: chemical mechanism development (CMD). Springer, Munich, p 49Google Scholar
  21. 21.
    Guenther A, Hewitt C, Erickson D, Fall R, Geron C, Graedel T, Harley P, Klinger L, Lerdau M, Mckay WA, Pierce T, Scholes B, Steinbrecher R, Tallamraju R, Taylor J, Zimmerman P (1995) A global model of natural volatile organic compound emissions. J Geophys Res 100:8873–8892CrossRefGoogle Scholar
  22. 22.
    Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer PI, Geron C (2006) Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos Chem Phys 6:3181–3210CrossRefGoogle Scholar
  23. 23.
    Hallquist M, Wenger JC, Baltensperger U, Rudich Y, Simpson D, Claeys M, Dommen J, Donahue NM, George C, Goldstein AH, Hamilton JF, Herrmann H, Hoffmann T, Iinuma Y, Jang M, Jenkin ME, Jimenez JL, Kiendler-Scharr A, Maenhaut W, McFiggans G, Mentel TF, Monod A, Prevot ASH, Seinfeld JH, Surratt JD, Szmigielski R, Wildt J (2009) The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos Chem Phys 9:5155–5236CrossRefGoogle Scholar
  24. 24.
    Hatch LE, Creamean JM, Ault AP, Surratt JD, Chan MN, Seinfeld JH, Edgerton ES, Su Y, Prather KA (2011) Measurements of isoprene-derived organosulfates in ambient aerosols by aerosol time-of-flight mass spectrometry – Part 1: Single particle atmospheric observations in Atlanta. Environ Sci Technol 45(12):5105–5111CrossRefGoogle Scholar
  25. 25.
    Herrmann H (2003) Kinetics of aqueous phase reactions relevant for atmospheric chemistry. Chem Rev 103:4691–4716CrossRefGoogle Scholar
  26. 26.
    Herrmann H, Hoffmann D, Schaefer T, Bruer P, Tilgner A (2010) Tropospheric aqueous-phase free-radical chemistry: radical sources, spectra, reaction kinetics and prediction tools. Eur J Chem Phys Phys Chem 11:3796–3822CrossRefGoogle Scholar
  27. 27.
    Hoffmann T, Huang RJ (2011) Atmospheric analytical chemistry. Anal Chem 83:4649–4664CrossRefGoogle Scholar
  28. 28.
    Hu KS, Darer AI, Elrod MJ (2011) Thermodynamics and kinetics of the hydrolysis of atmospherically relevant organonitrates and organosulfates. Atmos Chem Phys 11(16):8307–8320CrossRefGoogle Scholar
  29. 29.
    Iinuma Y, Muller C, Berndt T, Boge O, Claeys M, Herrmann H (2007) Evidence for the existence of organosulfates from beta-pinene ozonolysis in ambient secondary organic aerosol. Environ Sci Technol 41(19):6678–6683CrossRefGoogle Scholar
  30. 30.
    Iinuma Y, Muller C, Boge O, Gnauk T, Herrmann H (2007) The formation of organic sulfate esters in the limonene ozonolysis secondary organic aerosol (SOA) under acidic conditions. Atmos Environ 41:5571–5583CrossRefGoogle Scholar
  31. 31.
    Iinuma Y, Boege O, Kahnt A, Herrmann H (2009) Laboratory chamber studies on the formation of organosulfates from reactive uptake of monoterpene oxides. Phys Chem Chem Phys 11(36):7985–7997CrossRefGoogle Scholar
  32. 32.
    Jang M, Czoschke NM, Lee S, Kamens RM (2002) Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reactions. Science 298:814–817CrossRefGoogle Scholar
  33. 33.
    Koppman R (2007) Volatile organic compounds in the atmosphere. Wiley/Wiley-Blackwell, ChichesterCrossRefGoogle Scholar
  34. 34.
    Kristensen K, Glasius M (2011) Organosulfates and oxidation products from biogenic hydrocarbons in fine aerosols from a forest in North West Europe during spring. Atmos Environ 45:4546–4556CrossRefGoogle Scholar
  35. 35.
    Levin Z, Cotton WR (2009) Aerosol pollution impact on precipitation: a scientific review. Springer, DordrechtCrossRefGoogle Scholar
  36. 36.
    Liggio J, Li SM (2006) Organosulfate formation during the uptake of pinonaldehyde on acidic sulfate aerosols. Geophys Res Lett 33(13):L13808CrossRefGoogle Scholar
  37. 37.
    Liggio J, Li SM, McLaren R (2005) Reactive uptake of glyoxal by particulate matter. J Geophys Res 110:D10304. doi: 10310.11029/12004JD005113 CrossRefGoogle Scholar
  38. 38.
    Lockwood AL, Shepson PB, Fiddler MN, Alaghmand M (2010) Isoprene nitrates: preparation, separation, identification, yields, and atmospheric chemistry. Atmos Chem Phys 10:6169–6178CrossRefGoogle Scholar
  39. 39.
    Ma SX, Rindelaub JD, McAvey KM, Gagare PD, Nault BA, Ramachandran PV, Shepson PB (2011) α-Pinene nitrates: synthesis, yields and atmospheric chemistry. Atmos Chem Phys 11:6337–6347CrossRefGoogle Scholar
  40. 40.
    Minerath EC, Casale MT, Elrod MJ (2008) Kinetics feasibility study of alcohol sulfate esterification reactions in tropospheric aerosols. Environ Sci Technol 42:4410–4415CrossRefGoogle Scholar
  41. 41.
    Muller JF (1992) Geographical distribution and seasonal variation of surface emissions and deposition velocities of atmospheric trace gases. J Geophys Res 97:3787–3804CrossRefGoogle Scholar
  42. 42.
    Ng NL, Kwan AJ, Surratt JD, Chan AWH, Chhabra PS, Sorooshian A, Pye HOT, Crounse JD, Wennberg PO, Flagan RC, Seinfeld JH (2008) Secondary organic aerosol (SOA) formation from reaction of isoprene with nitrate radicals (NO3). Atmos Chem Phys 8:4117–4140CrossRefGoogle Scholar
  43. 43.
    Noziere B, Ekstrom S, Alsberg T, Holmstrom S (2010) Radical-initiated formation of organosulfates and surfactants in atmospheric aerosols. Geophys Res Lett 37:L05806CrossRefGoogle Scholar
  44. 44.
    Olson CN, Galloway MM, Yu G, Hedman CJ, Lockett MR, Yoon T, Stone EA, Smith LM, Keutsch FN (2011) Hydroxycarboxylic acid-derived organosulfates: synthesis, stability, and quantification in ambient aerosol. Environ Sci Technol 45(15):6468–6474CrossRefGoogle Scholar
  45. 45.
    Ormeño E, Gentner DR, Fares S, Karlik J, Hoo Park J, Goldstein AH (2010) Sesquiterpenoid emissions from agricultural crops: correlations to monoterpenoid emissions and leaf terpene content. Environ Sci Technol 44:3758–3764CrossRefGoogle Scholar
  46. 46.
    Pasiuk-Bronikowska W, Bronikowski T, Ulejczyk M (2003) Inhibition of the S(IV) Autoxidation in the atmosphere by secondary terpenic compounds. J Atmos Chem 44:97–111CrossRefGoogle Scholar
  47. 47.
    Pasiuk-Bronikowska W, Bronikowski T, Ulejczyk M (2003) Synergy in the autoxidation of S(IV) inhibited by phenolic compounds. J Phys Chem A 107:1742–1748CrossRefGoogle Scholar
  48. 48.
    Paulot F, Crounse JD, Kjaergaard HG, Kürten A, Clair JM, Seinfeld JH, Wennberg PO (2009) Unexpected epoxide formation in the gas-phase photooxidation of isoprene. Science 325:730–733CrossRefGoogle Scholar
  49. 49.
    Perri MJ, Lim YB, Seitzinger SP, Turpin BJ (2010) Organosulfates from glycolaldehyde in aqueous aerosols and clouds: laboratory studies. Atmos Environ 44(21–22):2658–2664CrossRefGoogle Scholar
  50. 50.
    Pratt KA, Prather KA (2012) Mass spectrometry of atmospheric aerosols – recent developments and applications. Part II: On-line mass spectrometry techniques. Mass Spectrom Rev 31:17–48CrossRefGoogle Scholar
  51. 51.
    Pratt KA, Prather KA (2012) Mass spectrometry of atmospheric aerosols – recent developments and applications. Part I: Off-line mass spectrometry techniques. Mass Spectrom Rev 31:1–16CrossRefGoogle Scholar
  52. 52.
    Reemtsma T, These A, Venkatachari P, Xia X, Hopke PK, Springer A, Linscheid M (2006) Identification of fulvic acids and sulfated and nitrated analogues in atmospheric aerosol by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 78:8299–8304CrossRefGoogle Scholar
  53. 53.
    Romero F, Oehme M (2005) Organosulfates – a new component of humic-like substances in atmospheric aerosols? J Atmos Chem 52:283–294CrossRefGoogle Scholar
  54. 54.
    Rudzinski KJ (2004) Degradation of isoprene in the presence of sulphoxy radical anions. J Atmos Chem 48:191–216CrossRefGoogle Scholar
  55. 55.
    Rudzinski KJ (2006) Heterogeneous and Aqueous-Phase Transformations of Isoprene. Environmental simulation chambers: application to atmospheric chemical processes NATO science series: IV. Earth Environ Sci 62:261–277Google Scholar
  56. 56.
    Rudzinski KJ, Gmachowski L, Kuznietsova I (2009) Reactions of isoprene and sulphoxy radical-anions – a possible source of atmospheric organosulphites and organosulphates. Atmos Chem Phys 9:2129–2140CrossRefGoogle Scholar
  57. 57.
    Smith MB, March J (2007) March’s advanced organic chemistry: reactions, mechanisms, and structure. Wiley-Interscience/Wiley, HobokenGoogle Scholar
  58. 58.
    Stone EA, Hedman CJ, Sheesley RJ, Shafer MM, Schauer JJ (2009) Investigating the chemical nature of humic-like substances (HULIS) in North American atmospheric aerosols by liquid chromatography tandem mass spectrometry. Atmos Environ 43:4205–4213CrossRefGoogle Scholar
  59. 59.
    Stone EA, Yang L, Yu LE, Rupakheti M (2012) Characterization of organosulfates in atmospheric aerosols at Four Asian locations. Atmos Environ 47:323–329CrossRefGoogle Scholar
  60. 60.
    Surratt JD (2010) Analysis of the chemical composition of atmospheric organic aerosols by mass spectrometry. PhD thesis, California Institute of TechnologyGoogle Scholar
  61. 61.
    Surratt JD, Kroll JH, Kleindienst TE, Edney EO, Claeys M, Sorooshian A, Ng NL, Offenberg JH, Lewandowski M, Jaoui M, Flagan RC, Seinfeld JH (2007) Evidence for organosulfates in secondary organic aerosol. Environ Sci Technol 41:517–527CrossRefGoogle Scholar
  62. 62.
    Surratt JD, Gomez-Gonzalez Y, Chan AWH, Vermeylen R, Shahgholi M, Kleindienst TE, Edney EO, Offenberg JH, Lewandowski M, Jaoui M, Maenhaut W, Claeys M, Flagan RC, Seinfeld JH (2008) Organosulfate formation in biogenic secondary organic aerosol. J Phys Chem A 112(36):8345–8378CrossRefGoogle Scholar
  63. 63.
    Surratt JD, Chan AWH, Eddingsaas NC, Chan MN, Loza CL, Kwan AJ, Hersey SP, Flagan RC, Wennberg PO, Seinfeld JH (2010) Reactive intermediates revealed in secondary organic aerosol formation from isoprene. Proc Natl Acad Sci USA 107:6640–6645CrossRefGoogle Scholar
  64. 64.
    Szmigielski R, Vermeylen R, Dommen J, Metzger A, Maenhaut W, Baltensperger U, Claeys M (2010) The acid effect in the formation of 2-methyltetrols from the photooxidation of isoprene in the presence of NOx. Atmos Res 98:183–189CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Laboratory of Environmental Chemistry, Institute of Physical ChemistryPolish Academy of Sciences (PAS)WarsawPoland

Personalised recommendations