Skip to main content

Novel Targeted Therapeutics for Peripheral T-Cell Lymphoma

  • Chapter
  • First Online:
Hematologic Cancers: From Molecular Pathobiology to Targeted Therapeutics

Part of the book series: Cancer Growth and Progression ((CAGP,volume 14))

  • 1241 Accesses

Abstract

The peripheral T-cell lymphomas (PTCL) are a group of aggressive mature T-cell and natural killer cell (NK) neoplasm’s that present with great morphological and molecular heterogeneity (Anderson et al. 1998). They are relatively rare diseases, constituting <15 % of all NHL’s (Groves et al. 2000). The present 2008 WHO classification recognizes over 20 sub-types of mature T-cell and NK-cell malignancies (WHO 2008). These sub-types are listed in Table 1 along with the annual incidence rates and 3 year survival rates as reported in the SEER database (Seer Cancer Statistic 1975). The most common histologies include: PTCL, not otherwise specified (PTCL-NOS); anaplastic large cell lymphoma (ALCL) and angioimmunoblastic T-cell lymphoma (AITL). Similar to the B-cell neoplasm’s, the T-cell lymphomas can be broadly classified as aggressive or indolent malignancies. The most aggressive histologies include PTCL-NOS, hepatosplenic T-cell lymphoma, the gamma/delta T-cell malignancies and extranodal NK/T-cell nasal type lymphoma. PTCL-NOS is often viewed as a “wastebasket” category for those diseases that do not fit cleanly into the other sub-types. Most cases of PTCL lack distinct genetic or biological alterations and prognostic models have largely relied on clinical features or simple biological factors such as proliferation. Despite a relatively poor understanding of the molecular pathogenesis of these diseases, significant progress has been made in the understanding of many PTCL entities. For example, ALK positive anaplastic large cell lymphoma (ALCL) is considered a distinct disease entity which is distinguished from the provisional entity of ALK negative ALCL, due to the distinct molecular pathogenesis, relatively younger age group in which it presents and better prognosis. Based on the recent publications from the ‘The International T-cell Lymphoma Project’, an international effort of over 22 centers worldwide which collected data from over 1,314 cases of T-cell and NK -cell lymphoma, we now recognize that PTCL-NOS is a distinct entity from ALK negative ALCL as the former is associated with a markedly inferior prognosis (Vose et al. 2008) Table 2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams J (2004) The development of proteasome inhibitors as anticancer drugs. Cancer Cell 5:417–421

    Article  PubMed  CAS  Google Scholar 

  • Advani RH, Hong F, Kristen N et al (2009) Cardiac toxicity associated with the anti-VEGF monoclonal antibody bevacizumab (Avastin) in combination with CHOP (A-CHOP) chemotherapy for Peripheral T Cell Lymphoma (PTCL):the ECOG 2404 Trial. Blood (ASH Annual Meeting Abstracts), Nov 114:1671

    Google Scholar 

  • Anderson JR, Armitage JO, Weisenburger DD (1998) Epidemiology of the non-Hodgkin’s lymphomas: distributions of the major subtypes differ by geographic locations. Non-Hodgkin’s lymphoma classification project. Ann Oncol 9:717–720

    Article  PubMed  CAS  Google Scholar 

  • Azzoli CG, Krug L, Miller V et al (2007) Phase I study of the antifolate pralatrexate given with vitamin B12 and folic acid supplementation in patients (pts) with advanced non-small-cell lung cancer. J Clin Oncol 25:608s ((suppl) Abstract 13006)

    Google Scholar 

  • Bartlett NL, Younes A, Carabasi MH (2008) A phase 1 multidose study of SGN-30 immunotherapy in patients with refractory or recurrent CD30? hematologic malignancies. Blood 111:1848–1854

    Article  PubMed  CAS  Google Scholar 

  • Bartlett N, Forero-Torres A, Rosenblatt J et al (2009) Complete remissions with weekly dosing of SGN-35, a novel antibody-drug conjugate (ADC) targeting CD30, in a phase I dose-escalation study in patients with relapsed or refractory Hodgkin lymphoma (HL) or systemic anaplastic large cell lymphoma. J Clin Oncol 27:15s, (suppl; Abstract 8500)

    Google Scholar 

  • Bhalla KN (2005) Epigenetic and chromatin modifiers as targeted therapy of hematologic malignancies. J Clin Oncol 23:3971–3993

    Article  PubMed  CAS  Google Scholar 

  • Blum KA, Johnson JL, Jung S-H (2008) Serious pulmonary toxicity with SGN-30 and gemcitabine, vinorelbine, and liposomaldoxorubicin in patients with relapsed/refractory Hodgkin lymphoma (HL). Cancer Leuk B (CALGB).2008; 50:502 (Blood; 112:92–93 (Abstract 232))

    Google Scholar 

  • Cheson BD, Horning SJ, Coiffier B et al (1999) Report of an international workshop to standardize response criteria for non-Hodgkin’s lymphomas. NCI sponsored international working group. J Clin Oncol 17:1244

    PubMed  CAS  Google Scholar 

  • Coiffier B, Brousse N, Peuchmaur M et al (1990) Peripheral T-cell lymphomas have a worse prognosis than B-cell lymphomas: a prospective study of 361 immunophenotyped patients treated with the LNH-84 regimen. The GELA (Groupe d’Etude des Lymphomes Agressives). Ann Oncol 1:45–50

    PubMed  CAS  Google Scholar 

  • Corradini P, Dodero A, Zallio F et al (2004) Graft-versus-lymphoma effect in relapsed peripheral T-cell non-Hodgkin’s lymphomas after reduced-intensity conditioning followed by allogeneic transplantation of hematopoietic cells. J Clin Oncol 22:2172–2176

    Article  PubMed  Google Scholar 

  • Cory S, Huang DC, Adams JM (2003) The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 22:8590–8607

    Article  PubMed  CAS  Google Scholar 

  • Czuczman MS, Porcu P, Johnson J et al (2007) Results of a phase II study of 506U78 in cutaneous T-cell lymphoma and peripheral T-cell lymphoma: CALGB 59901. Leuk Lymphoma 48(1):97–103

    Article  PubMed  CAS  Google Scholar 

  • D’Amore F, Radford J, Jerkeman M (2007) Zanolimumag (HuMax- CD4), a fully human monoclonal antibody: efficacy and safety in patients with relapsed or treatment-refractory noncutaneous CD4? T-cell lymphoma. Blood 110:999a (Abstract#3409) 2007

    Google Scholar 

  • De Coninck EC, Kim YH, Varghese A et al (2001) Clinical characteristics and outcome of patients with extracutaneous mycosis fungoides. J Clin Oncol 19:779–784

    PubMed  Google Scholar 

  • Dearden CE, Matutes E, Cazin B et al (2001) High remission rate in T-cell prolymphocytic leukemia with Campath-1 H. Blood 98(6):1721–1726, 15 September

    Article  PubMed  CAS  Google Scholar 

  • DeGraw J, Colwell W, Sirotnik FM (1993) Synthesis and antitumor activity of 10- Propargyl-10-deazaminoterin. J Med Chem 1936:2228–2231

    Article  Google Scholar 

  • Demierre M, Whittaker S, Kim Y, Kim E, Piekarz R, Prince M, Nichols J, Balser J, Prentice A, Bates S (2009) Pooled analyses of two international, multicenter clinical studies of romidepsin in 167 patients with cutaneous T-cell lymphoma (CTCL). J Clin Oncol 27:Abstract 8546

    Google Scholar 

  • Dickinson M, Ritchie D, DeAngelo DJ et al (2009) Preliminary evidence of disease response to the pan deacetylase inhibitor panobinostat (LBH589) in refractory Hodgkin lymphoma. Br J Haematol 147(1):97–101

    Article  PubMed  CAS  Google Scholar 

  • Dueck GS, Chua N, Prasad A, Stewart D (2009) Activity of lenalidomide in a phase II trial for T-cell lymphoma: report on the first 24 cases. J Clin Oncol 27:15s (suppl; Abstract 8524)

    Google Scholar 

  • Duvic M, Talpur R, Ni X et al (2007a) Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood 109:31–39

    Article  PubMed  CAS  Google Scholar 

  • Duvic M, Forero-Torres A, Foss F (2007b) Response to oral forodesine in refractory cutaneous T-cell lymphoma: interim results of a phase I/II study. Blood 110 (Abstract #122)

    Google Scholar 

  • Duvic M, Becker JC, Dalle S et al (2008) Phase II trial of oral panobinostat in patients with refractory Cutaneous T-cell Lymphoma, Blood (ASH Annual Meeting Abstracts), Nov 112:1005

    Google Scholar 

  • Duvic M, Reddy S, Pinter-Brown L (2009) A phase II study of SGN- 30 in cutaneous anaplastic large cell lymphoma and related lymphoproliferative disorders. Clin Cancer Res 15(9):6217–6224

    Article  PubMed  CAS  Google Scholar 

  • Ellis L, Pan Y, Smyth GK et al (2008) Histone deacetylase inhibitor panobinostat induces clinical responses with associated alterations in gene expression profiles in cutaneous T-cell lymphoma. Clin Cancer Res 14:4500–4510

    Article  PubMed  CAS  Google Scholar 

  • Enblad G, Hagberg H, Erlanson M (2004) A pilot study of alemtuzumab (anti-CD52 monoclonal antibody) therapy for patients with relapsed or chemotherapy-refractory peripheral T-cell lymphomas. Blood 103:2920–2924

    Article  PubMed  CAS  Google Scholar 

  • Escalon MP, Liu NS, Yang Y et al (2005) Prognostic factors and treatment of patients with T-cell non-Hodgkin lymphoma: the M. D. Anderson cancer center experience. Cancer 103:2091–2098

    Article  PubMed  Google Scholar 

  • Ferme C, Mateos MV, Szyldergemajn S et al (2008) Plitidepsin is active in PTCL: a subset analysis from an ongoing multicenter phase II trial. Blood (ASH Annual Meeting Abstracts) 112:Abstract 1566

    Google Scholar 

  • Furman RR, Gore L, Ravandi F (2006) Forodesine IV (Bcx-1777) is clinically active in relapsed/refractory T-cell leukemia: results of a phase II study (interim report) Blood 108:524a (Abstract #1851)

    Google Scholar 

  • Gallamini A, Stelitano C, Calvi R et al (2004) Peripheral T-cell lymphoma unspecified (PTCL-U): a new prognostic model from a retrospective multicentric clinical study. Blood 103:2474–2479

    Article  PubMed  CAS  Google Scholar 

  • Gallamini A, Zaja F, Patti C (2007) Alemtuzumab (Campath-1 H) and CHOP chemotherapy as first-line treatment of peripheral T-cell lymphoma: results of a GITIL (Gruppo Italiano Terapie Innovative nei Linfomi) prospective multicenter trial. Blood 110:2316–2323

    Article  PubMed  CAS  Google Scholar 

  • Gimsing P, Hansen M, Knudsen LM et al (2008) A phase I clinical trial of the histone deacetylase inhibitor belinostat in patients with advanced hematological neoplasia. Eur J Haematol 81:170–176

    Article  PubMed  CAS  Google Scholar 

  • Ginaldi L, De Massimo M, Matutes E (1998) Levels of expression of CD52 in normal and leukemic B and T cells: correlation with in vivo therapeutic responses to campath-1 H. Leuk Res 22(2):185–191, February

    Article  PubMed  CAS  Google Scholar 

  • Gisselbrecht C, Gaulard P, Lepage E et al (1998) Prognostic significance of T-cell phenotype in aggressive non-Hodgkin’s lymphomas. Groupe d’Etudes des Lymphomes de l’Adulte (GELA). Blood 92:76–82

    PubMed  CAS  Google Scholar 

  • Glaser KB, Staver MJ, Waring JF et al (2003) Gene expression profiling of multiple histone deacetylase (HDAC) inhibitors: defining common gene set produced by HDAC inhibition in T24 and MDA carcinoma cell lines. Mol Cancer Ther 2:151–163

    Article  PubMed  CAS  Google Scholar 

  • Groves FD, Linet MS, Travis LB, Devesa SS et al (2000) Cancer surveillance series: non-Hodgkin’s lymphoma incidence by histologic subtype in the United States from 1978 through 1995. J Natl Cancer Inst 92:1240–1251

    Article  PubMed  CAS  Google Scholar 

  • Hirase C, Maeda Y, Yamaguchi T, Miyatake J-I, Kanamaru A (2009) mTOR inhibition and adult T-cell leukemia. Leuk Lymphoma 50:645–647

    Article  PubMed  CAS  Google Scholar 

  • Horwitz S, Mulford D, Paul H (2008) Clofarabine is active in peripheral T-cell lymphomas: results of the phase I portion of a phase I/II study. Ann Oncol 19 (Suppl 4):iv157 (Abstract #244)

    Google Scholar 

  • Horwitz S, Zain J, O’Connor O (2009a) Pralatrexate (PDX) is active in cutaneous T-Cell lymphoma: preliminary results of a multi-center dose-finding trial. ASH (Abstract 1569)

    Google Scholar 

  • Horwitz S, Vose J, O’Connor O (2009b) A phase 1/2A open label study of pralatrexate and emcitiabine in patients with relapsed or refractory lymphoproliferative malignancies. ASH (poster 1570)

    Google Scholar 

  • Izbicka E, Diaz A, Saunders M (2009) Distince mechansistic activity profile of pralatrexate in comparison to other antifolates in vitro and in vivo molds of human cancers. Cancer Chemother Pharmacol 64:993–999

    Article  PubMed  CAS  Google Scholar 

  • Jagasia M, Morgan D, Goodman S et al (2004) Histology impacts the outcome of peripheral T-cell lymphomas after high dose chemotherapy and stem cell transplant. Leuk Lymphoma 45:2261–2267

    Article  PubMed  CAS  Google Scholar 

  • Jillella AP, Murren JR, Hamid KK et al (2000) P-glycoprotein expression and multidrug resistance in cutaneous T-cell lymphoma. Cancer Invest 18:609–613

    Article  PubMed  CAS  Google Scholar 

  • Johnston PB, Inwards DJ, Colgan JP et al (2010) A phase II trial of the oral mTOR inhibitor everolimus in relapsed Hodgkin’s lymphoma. Am J Hematol 85(5):320–324, May

    PubMed  CAS  Google Scholar 

  • Johnstone RW, Licht JD (2003) Histone deacetylase inhibitors in cancer therapy: is transcription the primary target? Cancer Cell 4:13–18

    Article  PubMed  CAS  Google Scholar 

  • Kelly WK, Richon VM, O’Connor O (2003) Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously. Clin Cancer Res 9:3578–3588

    PubMed  CAS  Google Scholar 

  • Kim YH, Liu HL, Mraz-Gernhard S et al (2003) Long-term outcome of 525 patients with mycosis fungoides and Sezary syndrome: clinical prognostic factors and risk for disease progression. Arch Dermatol 139:857–866

    Article  PubMed  Google Scholar 

  • Kim SW, Tanimoto TE, Hirabayashi N et al (2006) Myeloablative allogeneic hematopoietic stem cell transplantation for non-Hodgkin lymphoma: a nationwide survey in Japan. Blood 108:382–389

    Article  PubMed  CAS  Google Scholar 

  • Kim Y, Duvic M, Obitz E (2007) Clinical efficacy of zanolimumab (HuMax-CD4): two phase 2 studies in refractory cutaneous T-cell lymphoma. Blood 109:4655–4662

    Article  PubMed  CAS  Google Scholar 

  • Kluck RM, Bossy-Wetzel E, Green DR (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275:1132–1136

    Article  PubMed  CAS  Google Scholar 

  • Krug LM, Ng KK, Kris MG et al (2000) Phase I and pharmacokinetic study of 10-propargyl-10-deazaaminopterin, a new antifolate. Clin Cancer Res 6:3493–3498

    PubMed  CAS  Google Scholar 

  • Le Gouill S, Milpied N, Buzyn A et al (2008) Graft-versus-lymphoma effect for aggressive T-cell lymphomas in adults: a study by the Societe Francaise de Greffe de Moelle et de Therapie Cellulaire. J Clin Oncol 26:2264–2271

    Article  PubMed  Google Scholar 

  • Lee J, Suh C, Kang HJ (2008) Phase I study of proteasome inhibitor bortezomib plus CHOP in patients with advanced, aggressive T-cell or NK/T-cell lymphoma. Ann Oncol 19(12):2079–2083

    Article  PubMed  CAS  Google Scholar 

  • Lentzsch S, LeBlanc R, Podar K (2003) Immunomodulatory analogs of thalidomide inhibit growth of Hs Sultan cells and angiogenesis in vivo. Leukemia 17:41–44

    Article  PubMed  CAS  Google Scholar 

  • Mann BS, Johnson JR, Cohen MH et al (2007) FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist 12:1247–1252

    Article  PubMed  CAS  Google Scholar 

  • Marchi E, Paoluzzi L, Scotto L et al (©2010 AACR) Pralatrexate is synergistic with the proteasome inhibitor bortezomib in in vitro and in vivo models of T-cell lymphoid malignancies. Clin Cancer Res 16(14):3648–3658

    Google Scholar 

  • Marchi E, Alinari L, Tani M, Stefoni V (2005) Gemcitabine as frontline treatment for cutaneous T-cell lymphoma: phase II study of 32 patients. Cancer 104(11):2437–2441

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka H, Unami A, Fujimura T (2007) Mechanisms of HDAC inhibitor-induced thrombocytopenia. Eur J Pharmacol 571(2–3):88–96

    Article  PubMed  CAS  Google Scholar 

  • Mounier N, Gisselbrecht C, Briere J et al (2004) All aggressive lymphoma subtypes do not share similar outcome after front-line autotransplantation: a matched-control analysis by the Groupe d’Etude des Lymphomes de l’Adulte (GELA). Ann Oncol 15:1790–1797

    Article  PubMed  CAS  Google Scholar 

  • O’Brien S, Moore JO, Boyd TE (2007) Randomized phase III trial of fludarabine plus cyclophosphamide with or without oblimersen sodium [Bcl-2 antisense] in patients with relapsed or refractory chronic lymphocytic leukemia. J Clin Oncol 25(9):1114–1120, March 20

    Article  PubMed  Google Scholar 

  • O’Connor OA, Wright J, Moskowitz C et al (2005) Phase II clinical experience with the novel proteasome inhibitor bortezomib inpatients with indolent non-Hodgkin’s lymphoma and mantle celllymphoma. J Clin Oncol 23:676–684

    Article  PubMed  Google Scholar 

  • O’Connor OA, Heaney ML, Schwartz L (2006) Clinical experience with intravenous and oral formulations of the novel histone deacetylase inhibitor suberoylanilide hydroxamic acid in patients with advanced hematologic malignancies. J Clin Oncol 24:166–173

    Article  PubMed  Google Scholar 

  • O’Connor O, Pro B, Pinter-Brown LL (2009a) Results of the pivotal, multicenter, phase II study of pralatrexate in patients with relapsed or refractory peripheral T-cell lymphoma (PTCL). J Clin Oncol 27:15s (suppl; Abstract 8561)

    Google Scholar 

  • O’Connor O, Horwitz S, Zelenetz A (2009b) Phase II–I–II study for two different doses and schedules of Pralatrexate, a high affinity substrate for the reduced folate carrier in patients with relapsed or refractory lymphoma reveals marked activity in T cell malignancies. J Clin Oncol 27(26):4357–4364

    Article  PubMed  Google Scholar 

  • Olsen EA, Kim YH, Kuzel TM et al (2007) Phase IIb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma. J Clin Oncol 25:3109–3115

    Article  PubMed  CAS  Google Scholar 

  • Paoluzzi L, Gonen M, Bhagat G (2008a) The BH3-only mimetic ABT- 737 synergizes the antineoplastic activity of proteasome inhibitors in lymphoid malignancies. Blood 112(7):2906–2916

    Article  PubMed  CAS  Google Scholar 

  • Paoluzzi L, Gonen M, Gardner JR (2008b) Targeting Bcl-2 family members with the BH-3 mimetic AT-101 markedly enhances the therapeutic effects of chemotherapeutic agents in in vitro and vivo models of B-cell lymphoma. Blood 111:5350–5358

    Article  PubMed  CAS  Google Scholar 

  • Philip T, Guglielmi C, Hagenbeek A et al (1995) Autologous bone marrow transplantation as compared with salvage chemotherapy in relapses of chemotherapy-sensitive non-Hodgkin’s lymphoma. N Engl J Med 333:1540–1545

    Article  PubMed  CAS  Google Scholar 

  • Piekarz R, Bates S (2009) Epigenetic modifiers: basic understanding and clinical development. Clin Cancer Res 15(12):3918–3926

    Article  PubMed  CAS  Google Scholar 

  • Piekarz RL, Robey R, Sandor V et al (2001) Inhibitor of histone deacetylation, depsipeptide (FR901228), in the treatment of peripheral and cutaneous T-cell lymphoma: a case report. Blood 98:2865–2868

    Article  PubMed  CAS  Google Scholar 

  • Piekarz RL, Frye AR, Wright JJ (2006) Cardiac studies in patients treated with depsipeptide, FK228, in a phase II trial for T-cell lymphoma. Clin Cancer Res 12(12):3762–3773

    Article  PubMed  CAS  Google Scholar 

  • Piekarz RL, Robin F, Maria T (2009a) A multi-institutional phase II trial of t he HDAC inhibitor romidepsin as monotherapy for patients with cutaneous t-cell lymphoma. J Clin Oncol 27(32):5410–5417

    Article  PubMed  CAS  Google Scholar 

  • Piekarz et al (2009b) Phase II trial of single agent romidepsin in relapsed peripheral T cell lymphoma ASH (Abstract 14157)

    Google Scholar 

  • Pohlman B, Advani R, Duvic M et al (2009) Final results of a phase II trial of Belinostat (PXD-101) in patients with recurrent ore refractory peripheral or cutaneous T-cell lymphoma. Blood (ASH Annual Meeting Abstracts) 114:Abstract 920

    Google Scholar 

  • Querfeld C, Kuzel TM, Guitart J, Rosen ST (2009) Lenalidomide (Revlimid_) patients with cutaneous T-cell lymphoma. Hematol Meet Rep 3(1):103–105

    Google Scholar 

  • Ri M, Iida S, Ishida T (2009) Bortezomib-induced apoptosis in mature T-cell lymphoma cells partially depends on upregulation of Noxa and functional repression of Mcl-1. Cancer Sci 100:341–348

    Article  PubMed  CAS  Google Scholar 

  • Richardson PG, Schlossman RL, Weller E (2002) Immunomodulatory drug CC-5013 overcomes drug resistance and is well tolerated in patients with relapsed multiple myeloma. Blood 100:3063–3067

    Article  PubMed  CAS  Google Scholar 

  • Richardson PG, Sonneveld P, Schuster MW et al (2005) Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 352:2487–2498

    Article  PubMed  CAS  Google Scholar 

  • Richardson PG, Mitsiades C, Hideshima T, Anderson KC (2006) Bortezomib: proteasome inhibition as an effective anticancer therapy. Annu Rev Med 57:33–47

    Article  PubMed  CAS  Google Scholar 

  • Rudiger T, Weisenburger DD, Anderson JR et al (2002) Peripheral T-cell lymphoma (excluding anaplastic large-cell lymphoma): results from the non-Hodgkin’s lymphoma classification project. Ann Oncol 13:140–149

    Article  PubMed  CAS  Google Scholar 

  • Savage KJ, Chhanabhai M, Gascoyne RD et al (2004) Characterization of peripheral T-cell lymphomas in a single North American institution by the WHO classification. Ann Oncol 15:1467–1475

    Article  PubMed  CAS  Google Scholar 

  • Seer Cancer Statistic Review 1975–2007

    Google Scholar 

  • Sirotnak FM, DeGraw JI, Moccio DM et al (1984) New folate analogs of the 10-deaza-aminopterin series: basis for structural design and biochemical and pharmacologic properties. Cancer Chemother Pharmacol 12:18–25

    PubMed  CAS  Google Scholar 

  • Sirotnak FM, DeGraw JI, Colwell WT et al (1998) A new analogue of 10-deazaaminopterin with markedly enhanced curative effects against human tumor xenografts in mice. Cancer Chemother Pharmacol 42:313–318

    Article  PubMed  CAS  Google Scholar 

  • Susan DD, Christopher JK, Monette A (2007) Antitumor activity of PR-171, a novel irreversible inhibitor of the proteasome. Cancer Res 67:6383–6391

    Article  Google Scholar 

  • Thompson, MA, Pro, B, Sarris, A et al (2005) Results of a phase II study of 506U78 (Nelarabine) in refractory indolent B-cell or peripheral T-cell lymphoma. American Society of Hematology Annual Meeting, Abstract 2681

    Google Scholar 

  • Tse C, Shoemaker AR, Adickes J, Anderson MG (2008) ABT-263: a potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res 68(9):3421–3428

    Article  PubMed  CAS  Google Scholar 

  • Van Delft MF, Wei AH, Mason KD (2006) The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell 10:389–399

    Article  PubMed  Google Scholar 

  • Vose J, Armitage J, Weisenburger D (2008) International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol 26:4124–4130

    Article  PubMed  Google Scholar 

  • Wang ES, O’Connor O, She Y et al (2003) Activity of a novel antifolate (PDX, 10-propargyl 10-deazaaminopterin) against human lymphoma is superior to methotrexate and correlates with tumor RFC-1 gene expression. Leuk Lymphoma 44:1027–1035

    Article  PubMed  CAS  Google Scholar 

  • WHO (2008) Classification of tumours of haematopoietic and lymphoid tissues, 4th edn. WHO Press, Geneva

    Google Scholar 

  • Willemze R, Jaffe ES, Burg G et al (2005) WHO-EORTC classification for cutaneous lymphomas. Blood 105:3768–3785

    Article  PubMed  CAS  Google Scholar 

  • Younes A, Forero-Torres A, Bartlett NL et al (2008) Multiple complete responses in a phase I dose escalation study of the antibody drug conjugate SGN-35 in patients with relapsed or refractory CD-30 positive lymphomas. Blood (ASH Annual Meeting Abstracts) 112:Abstract 1006

    Google Scholar 

  • Yuan R, Kay A, Berg WJ, Lebwohl D (2009) Targeting tumorigenesis: development and use of mTOR inhibitors in cancer therapy. J Hematol Oncol 2(45)

    Google Scholar 

  • Zinzani PL, Alinari L, Tani M et al (2005) Preliminary observations of a phase II study of reduced-dose alemtuzumab treatment in patients with pretreated T-cell lymphoma. Haematologica 90(5):702–703, May

    PubMed  CAS  Google Scholar 

  • Zinzani PL, Musuraca G, Tani M (2007) Phase II trial of proteasome inhibitor bortezomib in patients with relapsed or refractory cutaneous T-cell lymphoma. J Clin Oncol 25(27):4293–4297

    Article  PubMed  CAS  Google Scholar 

  • Zinzani PL, Venturini F, Stefoni V et al (2010) Gemcitabine as single agent in pre-treated T-cell lymphoma patients: evaluation of the long term outcome. Ann Oncol 21(4):860–863

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasmine Zain M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Connor, O.O., Jain, S., Zain, J. (2012). Novel Targeted Therapeutics for Peripheral T-Cell Lymphoma. In: Tao, J., Sotomayor, E. (eds) Hematologic Cancers: From Molecular Pathobiology to Targeted Therapeutics. Cancer Growth and Progression, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5028-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5028-9_15

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5027-2

  • Online ISBN: 978-94-007-5028-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics