Advertisement

Nonlinear Susceptibility Experiments in a Supercooled Liquid: Evidence of Growing Spatial Correlations Close to Tg

  • C. Brun
  • D. L’Hôte
  • F. Ladieu
  • C. Crauste-Thibierge
  • G. Biroli
  • J-.P. Bouchaud
  • M. Tarzia
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

We give an overview of our recent works in which the a.c. nonlinear dielectric response of an archetypical glassformer (glycerol) was measured close to its glass transition temperature T g . The purpose was to investigate the prediction that the nonlinear susceptibility is directly related to the number of dynamically correlated molecules N { corr} (T). We explain that two nonlinear susceptibilities are available, namely χ3 (3) and χ3 (1), which correspond respectively to the nonlinear cubic response at the third harmonics and at the first harmonics. We describe how to measure these nonlinear responses, even if they yield signals much smaller than that of the linear response. We show that both \(\vert {\chi }_{3}^{(3)}(\omega,T)\vert\) and \(\vert {\chi }_{3}^{(1)}(\omega,T)\vert\) are peaked as a function of the angular frequency ω and mainly obeys critical scaling as a function of ωτα(T), where τα(T) is the relaxation time of the liquid. Both χ3 (3) and χ3 (1) decay with the same power-law of ω beyond the peak. The height of the peak increases as the temperature approaches T g : This yields an accurate determination of the temperature dependence of N { corr} (T), once the contribution of saturation of dipoles is disentangled from that of dynamical glassy correlations.

Keywords

Nonlinear Response Harmonic Measurement Supercooled Liquid Nonlinear Susceptibility Mode Coupling Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank R. Tourbot for realizing the experimental cell and P. Pari for the cryogenic setup. We acknowledge interesting discussions with C. Alba-Simionesco, P. M. Déjardin, Y. Kalmykov, R. Pick and R. Richert, as well as support by ANR grant DynHet.

References

  1. 1.
    Adam G, Gibbs JH (1965) J Chem Phys 43:139CrossRefADSGoogle Scholar
  2. 2.
    Angell CA (1988) J Non-Cryst Solid 102:205CrossRefADSGoogle Scholar
  3. 3.
    Berthier L, Biroli G, Bouchaud J.-P, Cipelletti L, El Masri D, L’Hôte D, Ladieu F, Pierno M (2005) Science 310:1797Google Scholar
  4. 4.
    Berthier L, Biroli G, Bouchaud J-P, Kob W, Miyazaki K, Reichman DR (2007) J Chem Phys 126:184503CrossRefADSGoogle Scholar
  5. 5.
    Bohmer R, Ngai KL, Angell CA, Plazek DJ (1993) J Chem Phys 99, 4201CrossRefADSGoogle Scholar
  6. 6.
    Bouchaud J-P, Biroli G (2005) Phys Rev B 72:064204CrossRefADSGoogle Scholar
  7. 7.
    Brun C, Ladieu F, L’Hôte D, Tarzia M, Biroli G, Bouchaud J-P (2011) Phys Rev B 84:104204CrossRefADSGoogle Scholar
  8. 8.
    Coffey WT, Paranjape BV (1978) Proc R Ir Acad 78A:17MathSciNetGoogle Scholar
  9. 9.
    Crauste-Thibierge C, Brun C, Ladieu F, L’Hôte D, Biroli G, Bouchaud J-P (2010) Phys Rev Lett 104:165703CrossRefADSGoogle Scholar
  10. 10.
    Dalle-Ferrier C, Thibierge C, Alba-Simionesco C, Berthier L, Biroli G, Bouchaud J-P, Ladieu F, L’Hôte D, Tarjus G (2007) Phys Rev E 76:041510CrossRefADSGoogle Scholar
  11. 11.
    Debenedetti PG (1996) Metastable liquids, concepts and principles. Princeton University Press, PrincetonGoogle Scholar
  12. 12.
    Debenedetti PG, Stilinger FH (2001) Nature 410:259–267CrossRefADSGoogle Scholar
  13. 13.
    Déjardin JL, Kalmykov YuP (2000) Phys Rev E 61:1211Google Scholar
  14. 14.
    Donth E (2001) The glass transition. Springer series in materials science, vol 48. Springer, Berlin/HeidelbergGoogle Scholar
  15. 15.
    Ediger MD (2000) Annu Rev Phys Chem 51:99CrossRefADSGoogle Scholar
  16. 16.
    Ediger MD, Angell CA, Nagel SR (1996) J Phys Chem 100:13200CrossRefGoogle Scholar
  17. 17.
    Huang W, Richert R (2008) Eur Phys J B 66:217CrossRefADSGoogle Scholar
  18. 18.
    Hurley MM, Harowell P (1995) Phys Rev E 52:1694; for a review see, e.g., W. Kob, arXiv:cond-mat/0212344v1Google Scholar
  19. 19.
    Lévy LP (1988) Phys Rev B 38:4963CrossRefADSGoogle Scholar
  20. 20.
    Lunkenheimer P, Pimenov A, Dressel M, Goncharov YuG, Bohmer R, Loidl A (1996) Phys Rev Lett 77:318Google Scholar
  21. 21.
    Richert R (2002) J Phys Condens Matter 14:R703CrossRefADSGoogle Scholar
  22. 22.
    Richert R, Weinstein S (2006) Phys Rev Lett 97:095703CrossRefADSGoogle Scholar
  23. 23.
    Richert R, Israeloff N, Alba-Simionesco C, Ladieu F, L’Hôte D (2010) Experimental approaches to heterogeneous dynamics, (see as well the other chapters). In: Dynamical heterogeneities in glasses, colloids and granular media. Oxford University Press, Oxford/New YorkGoogle Scholar
  24. 24.
    Schiener B, Bohmer R, Loidl A, Chamberlin RV (1996) Science, 274:752CrossRefADSGoogle Scholar
  25. 25.
    Sillescu H (1999) J Non-Cryst Solid 243:81CrossRefADSGoogle Scholar
  26. 26.
    Tarzia M, Biroli G, Bouchaud J-P, Lefèvre A (2010) J Chem Phys 132:054501CrossRefADSGoogle Scholar
  27. 27.
    Thibierge C, L’Hôte D, Ladieu F, Tourbot R (2008) Rev Sci Instrum 79:103905CrossRefADSGoogle Scholar
  28. 28.
    Tracht U, Wihelm M, Heuer A, Feng H, Schmidt-Rohr K, Speiss HW (1998) Phys Rev Lett 81:2727CrossRefADSGoogle Scholar
  29. 29.
    Weinstein S, Richert R (2007) Phys Rev B 75:064302CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • C. Brun
    • 1
  • D. L’Hôte
    • 1
  • F. Ladieu
    • 1
  • C. Crauste-Thibierge
    • 1
  • G. Biroli
    • 2
  • J-.P. Bouchaud
    • 3
  • M. Tarzia
    • 4
  1. 1.CEA/IRAMIS/SPECGif sur Yvette CedexFrance
  2. 2.CEA/IPhT (CNRS URA 2306)Gif sur Yvette CedexFrance
  3. 3.Science and Finance, Capital Fund ManagementParisFrance
  4. 4.LPTMC, UPMCParis Cedex 06France

Personalised recommendations