Advertisement

State of Water in Confinement near Hydrophilic Surfaces Below the Freezing Temperature

  • A. Greenbaum (Gutina)
  • Alexander A. Puzenko
  • M. Vasilyeva
  • Yu. Feldman
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

The main goal of the research is to find a relationship between the dynamic and the structural properties of water in hydrated heterogeneous systems. The results of dielectric spectroscopy studies of hydrated matrixes of porous glasses, clays and hydrated powder of Lysozyme are presented in wide frequency and temperature intervals. It is shown that for all systems studied the low temperature relaxation process demonstrates Arrhenius kinetics and exhibits a Cole-Cole (CC) behavior. A new phenomenological approach has been recently presented (see Puzenko A, Ben Ishai P, Feldman Yu, Phys Rev Lett 105:037601, 2010) that clarifies the physical mechanism of the dipole-matrix interaction in complex systems (CS) underlying the CC behaviour. A comparison porous glass with clays helps one to understand the specific adsorbed water dynamics due to the variety in the distribution of hydration centers.

Keywords

Porous Glass Complex Dielectric Permittivity Hydrophilic Material High Temperature Relaxation Unfreezable Water 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to thank Olga Maximov for help in conducting the Lysozyme experiments and preparation of this article.

References

  1. 1.
    Banys J, Kinka M, Macutkevic J, Volkel G, Bohlmann W, Umamaheswari V, Hartmann M, Poppl A (2005) Broadband dielectric spectroscopy of water confined in MCM-41 molecular sieve materials – low-temperature freezing phenomena. J Phys Condens Matter 17:2843CrossRefADSGoogle Scholar
  2. 2.
    Bergman R, Swenson J, Borjesson L, Jacobsson P (2000) Dielectric study of supercooled 2D water in a vermiculite clay. J Chem Phys 113:357CrossRefADSGoogle Scholar
  3. 3.
    Berlin E, Kliman PG, Pallansc MJ (1970) Changes in state of water in proteinaceous systems. J Colloid Interface Sci 34:488–494CrossRefGoogle Scholar
  4. 4.
    Chan RK, Davidson DW, Whalley E (1965) Effect of pressure on the dielectric properties of ice I. J Chem Phys 43:2376CrossRefADSGoogle Scholar
  5. 5.
    Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics I. Alternating current characteristics. J Chem Phys 9:341–351CrossRefADSGoogle Scholar
  6. 6.
    Crupi V, Majolino D, Migliardo P, Venuti V (2002) Neutron scattering study and dynamic properties of hydrogen-bonded liquids in mesoscopic confinement. 1. The water case. J Phys Chem B 106(42):10884–10894CrossRefGoogle Scholar
  7. 7.
    Crupi V, Majolino D, Migliardo P, Venuti V, Wanderlingh U, Mizota T, Telling M (2004) Neutron scattering study and dynamic properties of hydrogen-bonded liquids in mesoscopic confinement. 2. The zeolitic water case. J Phys Chem B 108(14):4314–4323CrossRefGoogle Scholar
  8. 8.
    Crupi V, Longo F, Majolino D, Venuti V (2007) Raman spectroscopy: probing dynamics of water molecules confined in nanoporous silica glasses. Eur Phys J Spec Top 141:61–64CrossRefGoogle Scholar
  9. 9.
    Denisov VP, Venu K, Peters J, Horlein HD, Halle B (1997) Orientational disorder and entropy of water in protein cavities. J Phys Chem B 101:9380–9389CrossRefGoogle Scholar
  10. 10.
    Faraone A, Liu L, Mou C-Y, Shih P-C, Copley JRD, Chen S-H (2003) Translational and rotational dynamics of water in mesoporous silica materials: MCM-41-S and MCM-48-S. J Chem Phys 119:3963–3971CrossRefADSGoogle Scholar
  11. 11.
    Feldman Y, Puzenko A, Ryabov Y (2006) Dielectric relaxation phenomena in complex materials. In: Rice SA, Kalmykov YP, Coffey WT (eds) Fractals, diffusion and relaxation in disordered complex systems, vol 133A. Wiley, Hoboken, pp 1–126Google Scholar
  12. 12.
    Fuchs K, Kaatze U (2001) Molecular dynamics of carbohydrate aqueous solutions. Dielectric relaxation as a function of glucose and fructose concentration. J Phys Chem B 105:2036–2042CrossRefGoogle Scholar
  13. 13.
    Fukuzaki M, Miura N, Sinyashiki N, Kunita D, Shiyoya S, Haida M, Mashimo S (1995) Comparison of water relaxation time in serum albumin solution using nuclear magnetic resonance and time domain reflectometry. J Chem Phys 99(1):431–435CrossRefGoogle Scholar
  14. 14.
    Grant EH, Sheppard RJ, South GP (1978) Dielectric behaviour of biological molecules in solutions. Clarendon, OxfordGoogle Scholar
  15. 15.
    Gutina A, Antropova T, Rysiakiewicz-Pasek E, Virnik K, Feldman Y (2003) Dielectric relaxation in porous glasses. Microporous Mesoporous Mater 58:237–254CrossRefGoogle Scholar
  16. 16.
    Hayashi Y, Shinyashiki N, Yagihara S (2002) Dynamical structure of water around biopolymers investigated by microwave dielectric measurements using time domain reflectometry method. J Non-Cryst Solids 305:328–332CrossRefADSGoogle Scholar
  17. 17.
    Hwang DW, Sinha AK, Cheng C-Y, Yu T-Y, Hwang L-P (2001) Water dynamics on the surface of MCM-41 via 2H double quantum filtered NMR and relaxation measurements. J Phys Chem B 105(24):5713–5721CrossRefGoogle Scholar
  18. 18.
    Jansson H, Swenson J (2003) Dynamics of water in molecular sieves by dielectric spectroscopy. Eur Phys J 12:013Google Scholar
  19. 19.
    Kaatze U (1990) On the existence of bound water in biological systems as probed by dielectric spectroscopy. Phys Med Biol 35(12):1663–1681CrossRefGoogle Scholar
  20. 20.
    Kim J, Lu W, Qiu W, Wang L, Caffrey M, Zhong D (2006) Ultrafast hydration dynamics in the lipidic cubic phase: discrete water structures in nanochannels. J Phys Chem B 110:21994–22000CrossRefGoogle Scholar
  21. 21.
    Levy E, Puzenko A, Kaatze U, Ben Ishai P, Feldman Y (2012) Dielectric spectra broadening as the signature of dipole-matrix interaction; I. Water in nonionic solutions. J Chem Phys 136(11):114502CrossRefADSGoogle Scholar
  22. 22.
    Levy E, Puzenko A, Kaatze U, Ben Ishai P, Feldman Y (2012) Dielectric spectra broadening as the signature of dipole-matrix interaction; II. Water in ionic solutions. J Chem Phys 136(11):114503CrossRefADSGoogle Scholar
  23. 23.
    Li T, Hassanali AA, Kao Y, Zhong D, Singer SJ (2007) Hydration dynamics and time scales of coupled water-protein fluctuations. J Am Chem Soc 129:3376–3382CrossRefGoogle Scholar
  24. 24.
    Mashimo S, Kuwabara S, Yagihara S, Higasi K (1987) Dielectric relaxation time and structure of bound water in biological materials. J Chem Phys 91(25):6337–6338CrossRefGoogle Scholar
  25. 25.
    Nandi N, Bagchi B (1997) Dielectric relaxation of biological water. J Phys Chem B 101:10954–10961CrossRefGoogle Scholar
  26. 26.
    Nandi N, Bagchi B (1998) Anomalous dielectric relaxation of aqueous protein solutions. J Phys Chem A 102(43):8217–8221CrossRefGoogle Scholar
  27. 27.
    Pethig R (1979) Dielectric and electronic properties of biological materials. Wiley, New York, Chapter 4Google Scholar
  28. 28.
    Puzenko A, Ben Ishai P, Feldman Y (2010) Cole-Cole broadening and strange kinetics in dielectric relaxation. Phys Rev Lett 105:037601CrossRefADSGoogle Scholar
  29. 29.
    Sinha G, Leys J, Wubbenhorst M, Glorieux C (2007) Dielectric spectroscopy of water confined between Aerosil nanoparticles and in Vycor nanoporous glass. Int J Thermophys 28:616–628CrossRefADSGoogle Scholar
  30. 30.
    Swenson J, Jansson H, Howells WS, Longeville S (2005) Dynamics of water in a molecular sieve by quasielastic neutron scattering. J Chem Phys 122:084505CrossRefADSGoogle Scholar
  31. 31.
    Takahara S, Nakano M, Kittaka S, Kuroda Y, Mori T, Hamano H, Yamaguchi T (1999) Neutron scattering study on dynamics of water molecules in MCM-41. J Phys Chem B 103:5814–5819CrossRefGoogle Scholar
  32. 32.
    Takamuku T, Yamagami M, Wakita H, Masuda Y, Yamaguchi T (1997) Thermal property, structure, and dynamics of supercooled water in porous silica by calorimetry, neutron scattering, and NMR relaxation. J Phys Chem B 101:5730–5739CrossRefGoogle Scholar
  33. 33.
    Takashima S (1989) Electrical properties of biopolymers and membranes. Institute of Physics Publishing, Philadelphia, pp 277–277Google Scholar
  34. 34.
    Tarasevich YI, Ovcharenko FD (1980) Adsorption sur des Min´eraux Argileux. Institut Franc¸ais du P´etrole, Rueil MalmaisonGoogle Scholar
  35. 35.
    Wang LW, Wang Q, Li CX, Niu XJ, Sun G, Lu KQ (2007) Layering in water adsorption and desorption on porous Vycor observed by dielectric measurements. Phys Rev B 76:155437CrossRefADSGoogle Scholar
  36. 36.
    Yamaguchi T, Yoshida K, Smirnov P, Takamuku T, Kittaka S, Takahara S, Kuroda Y, Bellissent-Funel MC (2007) Structure and dynamic properties of liquids confined in MCM-41 mesopores. Eur Phys J Spec Top 141:19–27CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • A. Greenbaum (Gutina)
    • 1
  • Alexander A. Puzenko
    • 1
  • M. Vasilyeva
    • 2
  • Yu. Feldman
    • 1
  1. 1.Department of Applied Physics, Edmond J. Safra CampusThe Hebrew University of JerusalemJerusalemIsrael
  2. 2.Radio-Electronic DepartmentThe Kazan (Volga Region) Federal UniversityKazanRepublic of Tatarstan, Russia

Personalised recommendations