Spectral Definition of the Characteristic Times for Anomalous Diffusion in a Potential

  • Yuri P. Kalmykov
  • William T. Coffey
  • Serguey V. Titov
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

Characteristic times of the noninertial fractional diffusion of a particle in a potential are defined in terms of three time constants, viz., the integral, effective, and longest relaxation times. These times are described using the eigenvalues of the corresponding Fokker-Planck operator for the normal diffusion. Knowledge of them is sufficient to accurately predict the anomalous relaxation behavior for all time scales of interest. As a particular example, we consider the subdiffusion of a planar rotor in a double-well potential.

Keywords

Relaxation Function Anomalous Diffusion Normal Diffusion Continuous Time Random Walk Longe Relaxation Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abramowitz M, Stegun I (eds) (1964) Handbook of mathematical functions. Dover, New YorkMATHGoogle Scholar
  2. 2.
    Barkai E, Silbey RS (2000) Fractional Kramers equation. J Phys Chem B 104:3866–3874CrossRefGoogle Scholar
  3. 3.
    Coffey WT, Kalmykov YP (2012) The Langevin equation, 3rd edn. World Scientific, SingaporeMATHGoogle Scholar
  4. 4.
    Coffey WT, Kalmykov YP, Massawe ES (1993) The effective eigenvalue method and its application to stochastic problems in conjunction with the nonlinear Langevin equation. Adv Chem Phys 85(2):667–792CrossRefGoogle Scholar
  5. 5.
    Coffey WT, Kalmykov YP, Titov SV (2002) Anomalous dielectric relaxation in the context of the Debye model of noninertial rotational diffusion. J Chem Phys 116:6422–6426CrossRefADSGoogle Scholar
  6. 6.
    Coffey WT, Kalmykov YP, Titov SV (2002) Inertial effects in anomalous dielectric relaxation. Phys Rev E 65:032102; Inertial effects in the anomalous dielectric relaxation of rotators in space. Phys Rev E 65:051105Google Scholar
  7. 7.
    Coffey WT, Kalmykov YP, Titov SV, Vij JK (2005) Fractional rotational diffusion of rigid dipoles in an asymmetrical double-well potential. Phys Rev E 72:011103CrossRefADSGoogle Scholar
  8. 8.
    Coffey WT, Kalmykov YP, Titov SV (2006) Fractional rotational diffusion and anomalous dielectric relaxation in dipole systems. Adv Chem Phys 133(B):285–437CrossRefGoogle Scholar
  9. 9.
    Coffey WT, Kalmykov YP, Titov SV (2012) Characteristic times of anomalous diffusion in a potential. In: Klafter J, Lim SC, Metzler R (eds) Fractional dynamics: recent advances. Word Scientific, Singapore, pp 51–75, Chapter 3Google Scholar
  10. 10.
    Friedrich R, Jenko F, Baule A, Eule S (2006) Exact solution of a generalized Kramers-Fokker-Planck equation retaining retardation effects. Phys Rev E 74:041103CrossRefADSGoogle Scholar
  11. 11.
    Garanin DA, Ischenko VV, Panina LV (1990) Dynamics of an ensemble of single-domain magnetic particles. Teor Mat Fiz 82:169–179CrossRefGoogle Scholar
  12. 12.
    Glöckle WG, Nonnenmacher TF (1991) Fractional integral operators and fox functions in the theory of viscoelasticity. Macromolecules 24:6426–6434CrossRefADSGoogle Scholar
  13. 13.
    Hänggi P, Talkner P, Borcovec M (1990) Reaction-rate theory: fifty years after Kramers. Rev Mod Phys 62:251–342CrossRefADSGoogle Scholar
  14. 14.
    Kalmykov YP (2000) Longitudinal dynamic susceptibility and relaxation time of superparamagnetic particles with cubic anisotropy: effect of a biasing magnetic field. Phys Rev E 61:6205–6212CrossRefADSGoogle Scholar
  15. 15.
    Kalmykov YP (2000) Evaluation of the smallest nonvanishing eigenvalue of the Fokker-Planck equation for the Brownian motion in a potential. II. The matrix continued fraction approach. Phys Rev E 62:227–236CrossRefADSGoogle Scholar
  16. 16.
    Kalmykov YP, Coffey WT, Titov SV (2004) Bimodal approximation for anomalous diffusion in a potential. Phys Rev E 69:021105CrossRefADSGoogle Scholar
  17. 17.
    Kalmykov YP, Coffey WT, Titov SV (2006) Fractional translational diffusion of a Brownian particle in a double well potential. Phys Rev E 74:011105CrossRefADSGoogle Scholar
  18. 18.
    Kalmykov YP, Coffey WT, Titov SV (2007) Inertial effects in the fractional translational diffusion of a Brownian particle in a double-well potential. Phys Rev E 75:031101MathSciNetCrossRefADSGoogle Scholar
  19. 19.
    Kramers HA (1940) Brownian motion in a field of force and the diffusion model of chemical reactions. Physica (Amsterdam) 7:284–304MathSciNetMATHCrossRefADSGoogle Scholar
  20. 20.
    Metzler R, Klafter J (2000) From a generalized Chapman-Kolmogorov equation to the fractional Klein-Kramers equation. J Phys Chem B 104:3851–3857CrossRefGoogle Scholar
  21. 21.
    Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339:1–77MathSciNetMATHCrossRefADSGoogle Scholar
  22. 22.
    Metzler R, Klafter J (2001) Anomalous stochastic processes in the fractional dynamics framework: Fokker-Planck equation, dispersive transport, and non-exponential relaxation. Adv Chem Phys 116:223–264CrossRefGoogle Scholar
  23. 23.
    Metzler R, Barkai E, Klafter J (1999) Anomalous diffusion and relaxation close to thermal equilibrium: a fractional Fokker-Planck equation approach. Phys Rev Lett 82:3563–3567CrossRefADSGoogle Scholar
  24. 24.
    Montroll EW, Weiss GH (1965) Random walks on lattices II. J Math Phys 6:167–181MathSciNetCrossRefADSGoogle Scholar
  25. 25.
    Montroll EW, Shlesinger MF (1984) On the wonderful world of random walks. In: Lebowitz JL, Montroll EW (eds) Non equilibrium phenomena II from stochastics to hydrodynamics. Elsevier Science Publishers, BV, AmsterdamGoogle Scholar
  26. 26.
    Moro G, Nordio PL (1985) Diffusive and jump description of hindered motion. Mol Phys 56:255CrossRefADSGoogle Scholar
  27. 27.
    Novikov VV, Privalko VP (2001) Temporal fractal model for the anomalous dielectric relaxation of inhomogeneous media with chaotic structure. Phys Rev E 64:031504CrossRefADSGoogle Scholar
  28. 28.
    Paul W, Baschnagel J (1999) Stochastic processes from physics to finance. Springer, BerlinMATHGoogle Scholar
  29. 29.
    Risken H (1989) The Fokker-Planck equation, 2nd edn. Springer, BerlinMATHCrossRefGoogle Scholar
  30. 30.
    Szabo A (1980) Theory of polarized fluorescent emission in uniaxial liquid crystals. J Chem Phys 72:4620–4626CrossRefADSGoogle Scholar
  31. 31.
    Watson GN (1944) Theory of Bessel functions, 2nd edn. Cambridge University Press, CambridgeMATHGoogle Scholar
  32. 32.
    Weron K, Kotulski M (1996) On the Cole-Cole relaxation function and related Mittag – Leffler distribution. Physica A 232:180–188CrossRefADSGoogle Scholar
  33. 33.
    West BJ, Bologna M, Grigolini P (2003) Physics of fractal operators. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Yuri P. Kalmykov
    • 1
  • William T. Coffey
    • 2
  • Serguey V. Titov
    • 3
  1. 1.Laboratoire de Mathématiques et PhysiqueUniversité de Perpignan Via DomitiaPerpignanFrance
  2. 2.Department of Electronic and Electrical EngineeringTrinity CollegeDublin 2Ireland
  3. 3.Kotelnikov Institute of Radio Engineering and ElectronicsRussian Academy of SciencesFryazinoRussian Federation

Personalised recommendations