Advertisement

Kinematics of Tree-Type Robotic Systems

  • Suril Vijaykumar Shah
  • Subir Kumar Saha
  • Jayanta Kumar Dutt
Chapter
Part of the Intelligent Systems, Control and Automation: Science and Engineering book series (ISCA, volume 62)

Abstract

Kinematic modeling of a tree-type robotic system is presented in this chapter. In order to obtain kinematic constraints, a tree-type topology is first divided into a set of modules. The kinematic constraints are then obtained between these modules by introducing the concepts of module-twist, module-joint-rate, etc. This helps in obtaining the generic form of the Decoupled Natural Orthogonal Complement (DeNOC) matrices for a tree-type system with the help of module-to-module velocity transformations. Using the present derivation, link-to-link velocity transformation (Saha 1999a, b) turns out to be a special case of the module-to-module velocity transformation (Shah et al. 2012a) presented in this chapter.

References

  1. Chaudhary, H., & Saha, S. K. (2007). Constraint wrench formulation for closed-loop systems using Two-level recursions. ASME Journal of Mechanical Design, 129, 1234–1242.CrossRefGoogle Scholar
  2. Duffy, J. (1978). Displacement analysis of the generalized RSSR mechanism. Mechanism and Machine Theory, 13, 533–541.CrossRefGoogle Scholar
  3. Saha, S. K. (1997). A decomposition of the manipulator inertia matrix. IEEE Transactions on Robotics and Automation, 13(2), 301–304.CrossRefGoogle Scholar
  4. Saha, S. K. (1999a). Analytical expression for the inverted inertia matrix of serial robots. International Journal of Robotic Research, 18(1), 116–124.Google Scholar
  5. Saha, S. K. (1999b). Dynamics of serial multibody systems using the decoupled natural orthogonal complement matrices. ASME Journal of Applied Mechanics, 66, 986–996.CrossRefGoogle Scholar
  6. Shah, S. V., Saha, S. K., & Dutt, J. K. (2009). Denavit-Hartenberg parameters of Euler-Angle-Joints for order (N) recursive forward dynamics. ASME International conference on multibody systems, nonlinear dynamics and control, USAGoogle Scholar
  7. Shah, S. V., Saha, S. K., & Dutt, J. K. (2012a). Modular framework for dynamics of tree-type legged robots. Mechanism and Machine Theory, Elsevier, 49, 234–255.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Suril Vijaykumar Shah
    • 1
  • Subir Kumar Saha
    • 2
  • Jayanta Kumar Dutt
    • 2
  1. 1.McGill UniversityMontrealCanada
  2. 2.Department of Mechanical EngineeringIIT DelhiNew DelhiIndia

Personalised recommendations