Advertisement

Dynamics of Robotic Systems

  • Suril Vijaykumar Shah
  • Subir Kumar Saha
  • Jayanta Kumar Dutt
Chapter
Part of the Intelligent Systems, Control and Automation: Science and Engineering book series (ISCA, volume 62)

Abstract

The field of robotics has grown a lot in last three to four decades. In this chapter, background and developments in the field of dynamics of robotic systems are presented.

Keywords

Robotic System Industrial Robot Constraint Force Spherical Joint Legged Robot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ahmadi, M., & Buehler, M. (1999). The ARL Monopod II Running Robot: Control and Energetic. IEEE International conference on robotics and automation (pp. 1689–1694).Google Scholar
  2. Anderson, K. S. (1991). An order-N formulation for the motion simulation of general multi-rigid tree systems. Journal of Computers and Structures, 46(3), 547–559.CrossRefGoogle Scholar
  3. Anderson, K. S., & Duan, S. (2000). Highly parallelizable low order algorithm for the dynamics of complex multi rigid body systems. Journal of Guidance Control and Dynamics, 23(2), 355–364.CrossRefGoogle Scholar
  4. Angeles, J., & Lee, S. (1988). The formulation of dynamical equations of holonomic mechanical systems using a natural orthogonal complement. ASME Journal of Applied Mechanics, 55, 243–244.zbMATHCrossRefGoogle Scholar
  5. Angeles, J., & Ma, O. (1988). Dynamic simulation of N-axis serial robotic manipulators using a natural orthogonal complement. International Journal of Robotics Research, 7(5), 32–47.CrossRefGoogle Scholar
  6. Angeles, J., Ma, O., & Rojas, A. (1989). An algorithm for the inverse dynamics of N-axis general manipulator using Kane's formulation of dynamical equations. Computers and Mathematics with Applications, 17(12), 1545–1561.zbMATHCrossRefGoogle Scholar
  7. Armstrong, W. W. (1979). Recursive solution to the equations of motion of an N-link manipulator. World Congress on theory of machines and mechanisms (ASME) (vol. 2, pp. 1343–1346), Montreal, Canada.Google Scholar
  8. Asada, H. (1984). Dynamic analysis and design of robot manipulators using inertia ellipsoids. IEEE International Conference on Robotics and Automation, 1, 94–102.Google Scholar
  9. Ascher, U. M., Pai, D. K., & Cloutier, B. P. (1997). Forward dynamics, elimination methods, and formulation stiffness in robot simulation. International Journal of Robotics Research, 16(6), 749–758.CrossRefGoogle Scholar
  10. Bae, D. S., & Haug, E. J. (1987). A recursive formulation for constrained mechanical system dynamics: Part I, open loop systems. Mechanics of Structure and Machine, 15, 359–382.CrossRefGoogle Scholar
  11. Bae, D., Kuhl, J. G., & Haug, E. J. (1988). A recursive formation for constrained mechanical system dynamics: Part III, parallel processing implementation. Mechanisms, Structures, and Machines, 16, 249–269.CrossRefGoogle Scholar
  12. Balafoutis, C. A., & Patel, R. V. (1991). Dynamic analysis of robot manipulators: A Cartesian tensor approach. Boston: Kluwer Academic.zbMATHCrossRefGoogle Scholar
  13. Baraff, D. (1994). Fast contact force computation for nonpenetrating rigid bodies. In Proceedings of SIGGRAPH, Orlando, FL.Google Scholar
  14. Baraff, D. (1996). Linear-time dynamics using Lagrange multipliers. In Proceedings of ACM SIGGRAPH (pp. 137–146), New Orleans.Google Scholar
  15. Baumgarte, J. (1972). Stabilization of constraints and integrals of motion. Computer methods in Applied Mechanics and Engineering, 1, 1–16.MathSciNetzbMATHCrossRefGoogle Scholar
  16. Berkemeier, M. D. (1998). Modeling the dynamics of quadrupedal running. International Journal of Robotics Research, 17, 971–985.CrossRefGoogle Scholar
  17. Bhagat, R., Choudhury, S. B., & Saha, S. K. (2011). Design and development of a 6-DOF parallel manipulator. International conference on multuibody dynamics (pp. 15–24), Vijaywada, India.Google Scholar
  18. Bicchi, A. (2000). Hands for dexterous manipulation and robust grasping: A difficult road toward simplicity. IEEE Transactions on Robotics and Automation, 16(6), 652–662.CrossRefGoogle Scholar
  19. Blajer, W., Bestle, D., & Schiehlen, W. (1994). An orthogonal complement matrix formulation for constrained multibody systems. ASME Journal of Mechanical Design, 116, 423–428.CrossRefGoogle Scholar
  20. Brandl, H., Johanni, R., & Otter, M. (1988). A very efficient algorithm for the simulation of robots and similar multibody systems without inversion of the mass matrix. In Theory of robots (pp. 95–100). Oxford: Pergamon Press.Google Scholar
  21. Brown, B., & Zeglin, G., (1998). The Bow Leg Hopping robot. IEEE International conference on robotics and automation (pp. 781–786).Google Scholar
  22. Buehler, M., Battaglia, R., Cocosco, A., Hawker, G., Sarkis, J., & Yamazaki, K. (1998). SCOUT: A simple quadruped that walks, climbs and runs. IEEE international conference on Robotics and Automation (pp. 1707–1712).Google Scholar
  23. Cameron, J. M., & Book, W. J. (1997). Modeling mechanisms with nonholonomic joints using the Boltzmann-Hammel equations. International Journal of Robotics Research, 16(1), 47–59.CrossRefGoogle Scholar
  24. Cham, J. G., Bailey, S. A., Clark, J. E., Full, R. J., & Cutkosky, M. R. (2002). Fast and robust: Hexapedal robots via shape deposition manufacturing. International Journal of Robotics Research, 21(10), 869–882.CrossRefGoogle Scholar
  25. Chaudhary, H., & Saha, S. K. (2007). Constraint wrench formulation for closed-loop systems using Two-level recursions. ASME Journal of Mechanical Design, 129, 1234–1242.CrossRefGoogle Scholar
  26. Chaudhary, H., & Saha, S. K. (2009). Dynamics and balancing of multibody systems. Berlin: Springer.zbMATHCrossRefGoogle Scholar
  27. Collins, S. H., & Ruina, A. (2005). A Bipedal walking robot with efficient sand human-like gait. IEEE international conference on robotics and automation (pp. 1983–1988).Google Scholar
  28. Coset, H., Lynch, K. M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L. E., & Thrun, S. (2005). Principle of robot motion: Theory, algorithms, and implementations. Cambridge, MA: MIT Press.Google Scholar
  29. Craig, J. J. (2006). Introduction to robotics, mechanics and control. Delhi: Pearson Education.Google Scholar
  30. Critchley, J. S., & Anderson, K. S. (2003). A generalized recursive coordinate reduction method for multibody system dynamics. Multibody System Dynamics, 9, 185–212.MathSciNetzbMATHCrossRefGoogle Scholar
  31. Critchley, J. H., & Anderson, K. S. (2004). Parallel logarithmic order algorithm for general multibody system dynamics. Journal of Multiscale Computational Engineering, 12(1), 75–93.zbMATHGoogle Scholar
  32. Cyril, X. (1988). Dynamics of flexible link manipulators. Ph.D. dissertation, McGill University, CanadaGoogle Scholar
  33. Denavit, J., & Hartenberg, R. S. (1955). A kinematic notation for lower-pair mechanisms based on matrices. Journal of Applied Mechanics, 22, 215–221.MathSciNetzbMATHGoogle Scholar
  34. Duffy, J. (1978). Displacement analysis of the generalized RSSR mechanism. Mechanism and Machine Theory, 13, 533–541.CrossRefGoogle Scholar
  35. Eberhard, P., & Schiehlen, W. (2006). Computational dynamics of multibody systems: History, formalisms, and applications. ASME Journal of Computational and Nonlinear Dynamics, 1(1), 3–12.CrossRefGoogle Scholar
  36. Espenschied, K. S., Quinn, R. D., Beer, R. D., & Chiel, H. J. (1996). Biologically based distributed control and local reflexes improve rough terrain locomotion in a hexapod robot. Robotics and Autonomous Systems, 18(1–2), 59–64.CrossRefGoogle Scholar
  37. Fang, A. C., & Pollard, N. S. (2003). Efficient synthesis of physically valid human motion. ACM Transactions on Graphics (SIGGRAPH), 22(3), 417–426.CrossRefGoogle Scholar
  38. Featherstone, R. (1983). The calculation of robotic dynamics using articulated body inertias. International Journal of Robotics Research, 2, 13–30.CrossRefGoogle Scholar
  39. Featherstone, R. (1987). Robot dynamics algorithms. Boston: Kluwer Academic.Google Scholar
  40. Featherstone, R. (1999). A divide-and-conquer articulated body algorithm for parallel O.Log.N calculation of rigid body dynamics. Part 1: Basic algorithm. International Journal of Robotics Research, 18(9), 867–875.CrossRefGoogle Scholar
  41. Featherstone, R. (2005). Efficient factorization of the joint-space inertia matrix for branched kinematic tree. International Journal of Robotics Research, 24(6), 487–500.CrossRefGoogle Scholar
  42. Featherstone, R., & Orin, D. (2000). Robot dynamics: Equations and algorithms. IEEE International Conference on Robotics and Automation, 1, 826–834.Google Scholar
  43. Fijany, A., Sharf, I., & D'Eleuterio, G. M. T. (1995). Parallel O(Log N) algorithms for computation of manipulator forward dynamics. IEEE Transactions on Robotics and Automation, 11(3), 389–400.CrossRefGoogle Scholar
  44. Freeman, P. S., & Orin, D. E. (1991). Efficient dynamic simulation of a quadruped using a decoupled tree structured approach. International Journal of Robotics Research, 10, 619–627.CrossRefGoogle Scholar
  45. Fukuoka, Y., Kimura, H., & Cohen, A. H. (2003). Adaptive dynamic walking of a quadruped robot on irregular terrain based on biological concepts. International Journal of Robotics Research, 22, 187–202.CrossRefGoogle Scholar
  46. Furukawa, N., Namiki, A., Taku, S., & Ishikawa, M. (2006). Dynamic regrasping using a high-speed multifingered hand and a high-speed vision system. IEEE International Conference on Robotics and Automation, 2006, 181–187.Google Scholar
  47. Gerritsen, K. G. M., Van Den Bogert, A. J., & Nigg, B. M. (1995). Direct dynamics simulation of the impact phase in heel-toe running. Journal of Biomechanics, 28(6), 661–668.CrossRefGoogle Scholar
  48. Goldenberg, A. A., Benhabib, B., & Fenton, R. G. (1985). Complete generalized solution to the inverse kinematics of robots. IEEE Journal Robotics and Automation, RA-1(1), 14–20.Google Scholar
  49. Hasegawa, Y., Higashiura, M., & Fukuda, T. (2003). Simplified generation algorithm of regrasping motion – Performance comparison of online-searching approach with EP-based approach. IEEE International Conference on Robotics and Automation, 2, 1811–1816.Google Scholar
  50. Hemami, H., & Weimer, F. C. (1981). Modeling of nonholonomic dynamic systems with applications. ASME Journal of Applied Mechanics, 48(1), 177–182.zbMATHCrossRefGoogle Scholar
  51. Hirai, K., Hirose, M., Haikawa, Y., & Takenaka, T. (1998). The development of Honda humanoid robot. IEEE international conference on robotic and automation (pp. 1321–1326).Google Scholar
  52. Hollerbach, J. M. (1980). A recursive Lagrangian formulation of manipulator dynamics and a comparative study of dynamics formulation complexity. IEEE Transactions on Systems, Man, and Cybernetics, 10(11), 730–736.MathSciNetCrossRefGoogle Scholar
  53. Hollerbach, J. M., & Gideon, S. (1983). Wrist-partitioned inverse kinematic accelerations and manipulator dynamics. International Journal of Robotics Research, 4, 61–76.Google Scholar
  54. Hu, W., Marhefka, D. W., & Orin, D. E. (2005). Hybrid kinematic and dynamic simulation of running machines. IEEE Transactions on Robotics, 21(3), 490–497.CrossRefGoogle Scholar
  55. Huston, R. L., & Passerello, C. E. (1974). On constraint equations-a new approach. ASME Journal of Applied Mechanics, 41, 1130–1131.CrossRefGoogle Scholar
  56. Hyon, S., Emura, T., & Mita, T. (2003). Dynamics-based control of a one-legged hopping robot. Journal of Systems and Control Engineering, 217(2), 83–98.Google Scholar
  57. Jacobsen, S. C, Iversen, E. K., Knutti, D. F., Johnson, R. T., & Biggers, K. B. (1986). Design of the Utah/MIT Dextrous Hand. IEEE international conference on robotics & automation (pp. 1520–1532).Google Scholar
  58. Kahn, M. E., & Roth, B. (1971). The near minimum-time control of open-loop articulated kinematic chains. ASME Journal of Dynamics Systems Measurement and Control, 91, 164–172.CrossRefGoogle Scholar
  59. Kahtib, O., & Burdick, J. (1987). Optimization of dynamics in manipulator design: The operational space formulation. International Journal of Robotics and Automation, 2(2), 90–98.Google Scholar
  60. Kamman, J. W., & Huston, R. L. (1984). Constrained multibody system dynamics: An automated approach. Computers and Structures, 18(6), 999–1003.zbMATHCrossRefGoogle Scholar
  61. Kane, T. R., & Levinson, D. A. (1983). The use of Kane’s dynamical equations for robotics. International Journal of Robotics Research, 2(3), 3–21.CrossRefGoogle Scholar
  62. Kaneko, K., Harada, K., Kanehiro, F., Miyamori, G., & Akachi, K. (2008). Humanoid robot HRP-3. IEEE/RSJ international conference on intelligent robots and systems (pp. 2471–2478).Google Scholar
  63. Kelly, R., Santibanez, V., & Loria, A. (2005). Control of robot manipulators in joint space. London: Springer.Google Scholar
  64. Khalil, W., Kleinfinger, J. F., & Gautier, M. (1986). Reducing the computational burden of the dynamical models of robots. IEEE international conference on robotics & automation (pp. 525–531).Google Scholar
  65. Khan, W. A., Krovi, V. N., Saha, S. K., & Angeles, J. (2005). Recursive kinematics and inverse dynamics for a planar 3R parallel manipulator. Journal of Dynamic Systems, Measurement, and Control, 127(4), 529–536.CrossRefGoogle Scholar
  66. Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile robots. International Journal of Robotics Research, 5(1), 90–98.MathSciNetCrossRefGoogle Scholar
  67. Khatib, O. (1987). Unified approach for motion and force control of robot manipulators: The operational space formulation. IEEE Journal of Robotics and Automation, RA-3(1), 43–53.CrossRefGoogle Scholar
  68. Kim, S. S., & Vanderploeg, M. J. (1986). A general and efficient method for dynamic analysis of mechanical systems using velocity transformations. ASME Journal of Mechanisms, Transmissions, and Automation in Design, 108(6), 176–182.CrossRefGoogle Scholar
  69. Kimura, H., Fukuoka, Y., & Cohen, A. H. (2007). Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts. International Journal of Robotics Research, 26(5), 475–490.CrossRefGoogle Scholar
  70. Kuroki, Y., Fujita, M., Ishida, T., Nagasaka, K., & Yamaguchi, J. (2003). A small biped entertainment robot exploring attractive applications. IEEE international conference on robotics and automation (pp. 471 –476).Google Scholar
  71. Lee, K., & Chirikjian, S. G. (2005). A new perspective on O(N) mass-matrix Inversion for serial revolute manipulators. IEEE conference on robotics and automation (pp. 4733–4737).Google Scholar
  72. Lewis, F. L., Dawson, D. M., & Abdallah, C. T. (2004). Robot manipulator control: Theory and practice. New York: Marcel Dekker Inc.Google Scholar
  73. Li, C., & Sankar, T. S. (1992). Fast inverse dynamics computation in real-time robot control. Mechanism and Machine Theory, 27(6), 741–750.CrossRefGoogle Scholar
  74. Lilly, K. W. (1993). Efficient dynamic simulation of robotic mechanisms. Boston: Kluwer Academic.zbMATHCrossRefGoogle Scholar
  75. Lilly, K. W., & Orin, D. E. (1991). Alternate formulations for the manipulator inertia matrix. International Journal of Robotics Research, 10(1), 64–74.CrossRefGoogle Scholar
  76. Lloyd, J. (2005). Fast implementation of Lemke’s algorithm for rigid body contact simulation. IEEE international conference on robotics and automation (pp. 4538–4543).Google Scholar
  77. Luh, J. Y. S., Walker, M. W., & Paul, R. P. C. (1980). On-Line computational scheme for mechanical manipulators. ASME Journal Of Dynamic Systems Measurement and Control, 102, 69–76.MathSciNetCrossRefGoogle Scholar
  78. Ma, O., & Angeles, J. (1990). The concept of dynamic isotropy and its applications to inverse kinematics and trajectory planning. IEEE International Conference on Robotics and Automation, 1, 481–486.CrossRefGoogle Scholar
  79. Mani, N. K., Haug, E. J., & Atkinson, K. E. (1985). Application of singular value decomposition for analysis of mechanical system dynamics. ASME Journal of Mechanisms, Transmissions, and Automation in Design, 107(1), 82–87.CrossRefGoogle Scholar
  80. Marhefka, D. W., Orin, D. E., Schmiedeier, J. P., & Waldron, K. J. (2003). Intelligent control of quadruped gallops. IEEE/ASME Transactions on Mechatronics, 8(4), 446–456.CrossRefGoogle Scholar
  81. Mason, M., & Salisbury, J. K. (1985). Robot hands and the mechanics of manipulation. Cambridge, MA: MIT Press.Google Scholar
  82. McGeer, T. (1990). Passive dynamic walking. International Journal of Robotics Research, 9(2), 62–82.CrossRefGoogle Scholar
  83. McMillan, S., & Orin, D. E. (1995). Efficient computation of articulated-body inertias using successive axial screws. IEEE Transactions on Robotics and Automation, 11(2), 606–611.CrossRefGoogle Scholar
  84. McMillan, S., & Orin, D. E. (1998). Forward dynamics of Multilegged vehicles. IEEE international conference on robotics and automation (pp. 464–470).Google Scholar
  85. McPhee, J. J. (1996). On the use of linear graph theory in multibody system dynamics. Nonlinear Dynamics, 9, 73–90.CrossRefGoogle Scholar
  86. Mirtich, B., & Canny, J. (1995). Impulse-based simulation of rigid bodies. Symposium on interactive 3D graphics (pp. 181–188), Monterey, CA.Google Scholar
  87. Miura, H., & Shimoyama, I. (1984). Dynamic walk of a biped. International Journal of Robotics Research, 3(2), 60–74.CrossRefGoogle Scholar
  88. Mohan, A., & Saha, S. K. (2007). A recursive, numerically stable, and efficient algorithm for serial robots. Multibody System Dynamics, 17(4), 291–319.MathSciNetzbMATHCrossRefGoogle Scholar
  89. Muybridge, E. (1957). Animals in motion. New York: Dover Publications.Google Scholar
  90. Nelson, G. M., & Quinn, R. D. (1998). Posture control of a cockroach-like robot. IEEE international conference on robotics and automation (pp. 157–162).Google Scholar
  91. Nigg, B. M., & Herzog, W. (1999). Biomechanics of the musculo-skeletal system. Chichester: Wiley.Google Scholar
  92. Nikravesh, P. E. (1988). Computer-aided analysis of mechanical systems. Englewood Cliffs: Prentice-Hall.Google Scholar
  93. Nikravesh, P. E., & Gim, G. (1993). Systematic construction of the equations of motion for multibody systems containing closed kinematic loops. ASME Journal of Mechanical Design, 115, 143–149.CrossRefGoogle Scholar
  94. Ouezdou, F. B., Bruneau, O., & Guinot, J. C. (1998). Dynamic analysis tool for legged robots. Multibody System Dynamics, 2(4), 369–391.MathSciNetzbMATHCrossRefGoogle Scholar
  95. Park, F. C., Bobrow, J. E., & Ploen, S. R. (1995). A Lie Group formulation of robot dynamics. International Journal of Robotics Research, 14(6), 606–618.Google Scholar
  96. Perrin, B., Chevallereau, C., & Verdier, C. (1997). Calculation of the direct dynamic model of walking robots: Comparison between two methods. IEEE international conference on robotics and automation (pp. 1088–1093).Google Scholar
  97. Pfeiffer, F. (1996). Grasping with hydraulic fingers – An example of mechatronics. IEEE/ASME Transactions on Mechatronics, 1(2), 158–167.MathSciNetCrossRefGoogle Scholar
  98. Pons, J. L., Ceres, R., & Pfeiffer, F. (1999). Multifingered dextrous robotics hand design and control: A review. Robotica, 17(6), 661–674.CrossRefGoogle Scholar
  99. Raibert, M. H. (1984). Hopping in legged system- modeling and simulation for the two-Dimensional one-legged case. IEEE Transactions on Systems, Man, and Cybernetics, 14(3), 451–463.CrossRefGoogle Scholar
  100. Raibert, M. H. (1986). Legged robot that balance. Cambridge, MA: MIT Press.Google Scholar
  101. Ringrose, R. (1997). Self-stabilizing running. IEEE International Conference on Robotics and Automation, 1, 487–493.Google Scholar
  102. Roberson, R. E., & Schwertassek, R. (1988). Dynamics of multibody systems. Berlin: Springer.zbMATHCrossRefGoogle Scholar
  103. Rodriguez, G. (1987). Kalman filtering, smoothing, and recursive robot Arm forward and inverse dynamics. IEEE Journal of Robotics and Automation, 3(6), 624–639.CrossRefGoogle Scholar
  104. Rodriguez, G., Jain, A., & Kreutz-Delgado, K. (1991). A spatial operator algebra for manipulator modeling and control. International Journal of Robotics Research, 10(4), 371–381.CrossRefGoogle Scholar
  105. Rodriguez, G., Jain, A., & Kreutz-Delgado, K. (1992). Spatial operator algebra for multibody system dynamics. Journal of the Astronautical Sciences, 40(1), 27–50.MathSciNetGoogle Scholar
  106. Rosenthal, D. E. (1990). An order n formulation for robotic systems. Journal of Astronautical Sciences, 38(4), 511–529.Google Scholar
  107. Saha, S. K. (1997). A decomposition of the manipulator inertia matrix. IEEE Transactions on Robotics and Automation, 13(2), 301–304.CrossRefGoogle Scholar
  108. Saha, S. K. (1999a). Analytical expression for the inverted inertia matrix of serial robots. International Journal of Robotic Research, 18(1), 116–124.Google Scholar
  109. Saha, S. K. (1999b). Dynamics of serial multibody systems using the decoupled natural orthogonal complement matrices. ASME Journal of Applied Mechanics, 66, 986–996.CrossRefGoogle Scholar
  110. Saha, S. K., & Angeles, J. (1991). Dynamics of nonholonomic mechanical systems using a natural orthogonal complement. ASME J of Applied Mechanics, 58, 238–243.zbMATHCrossRefGoogle Scholar
  111. Saha, S. K., & Schiehlen, W. O. (2001). Recursive kinematics and dynamics for closed loop multibody systems. International Journal of Mechanics of Structures and Machines, 29(2), 143–175.CrossRefGoogle Scholar
  112. Saha, S. K., Shirinzadeh, B., & Gl, A. (2006). Dynamic model simplification of serial manipulators. Mexico: ISRA.Google Scholar
  113. Sakagami, Y., Watanabe,R., Aoyama, C., Matsunaga, S., Higaki, N., & Fujimura, K. (2002). The intelligent ASIMO: System overview and integration. IEEE international conference on intelligent robots and systems (pp. 2478–2483).Google Scholar
  114. Salisbury, J. K., & Craig, J. J. (1982). Articulated hands: Force and kinematic issues. International Journal Robotics Research, 1(1), 4–17.CrossRefGoogle Scholar
  115. Saranli, U., Buehler, M., & Koditschek, D. E. (2001). Rhex – A simple and highly mobile hexapod robot. International Journal of Robotics Research, 20(7), 616–631.CrossRefGoogle Scholar
  116. Saranli, U., Rizzi, A. A., & Koditschek, D. E. (2004). Model-based dynamic self-righting maneuvers for a hexapedal robot. International Journal of Robotics Research, 23(9), 903–918.CrossRefGoogle Scholar
  117. Schiehlen, W. (1990). Multibody systems handbook. Berlin: Springer.zbMATHCrossRefGoogle Scholar
  118. Schiehlen, W. (1997). Multibody system dynamics: Roots and perspectives. Multibody System Dynamics, 1, 49–188.MathSciNetCrossRefGoogle Scholar
  119. Shabana, A. A. (2001). Computational dynamics. New York: Wiley.zbMATHGoogle Scholar
  120. Shah, S. V., Saha, S. K., & Dutt, J. K. (2009). Denavit-Hartenberg parameters of Euler-Angle-Joints for order (N) recursive forward dynamics. ASME International conference on multibody systems, nonlinear dynamics and control, USAGoogle Scholar
  121. Shah, S. V., Saha, S. K., & Dutt, J. K. (2012a). Modular framework for dynamics of tree-type legged robots. Mechanism and Machine Theory, Elsevier, 49, 234–255.CrossRefGoogle Scholar
  122. Shah, S. V., Saha, S. K., & Dutt, J. K. (2012b). Denavit-Hartenberg (DH) Parametrization of Euler Angles. ASME J of Nonlinear and Computational Dynamics, 7(2).Google Scholar
  123. Shih, C. L., Gruver, W. A., & Lee, T. T. (1993). Inverse kinematics and inverse dynamics for control of a biped walking machine. Journal of Robotic Systems, 10(4), 531–555.zbMATHCrossRefGoogle Scholar
  124. Shuster, M. D. (1993). A survey of attitude representations. Journal of the Astronautical Sciences, 41(4), 439–517.MathSciNetGoogle Scholar
  125. Shuster, M. D., & Oh, S. D. (1981). Three-axis attitude determination from vector observation. Journal of Guidance, Control and Dynamics, 4(1), 70–77.zbMATHCrossRefGoogle Scholar
  126. Singla, P., Mortari, D., & Junkins, J. L. (2004). How to avoid singularity for Euler Angle Set?. AAS space flight mechanics conference, Hawaii.Google Scholar
  127. Stejskal, V., & Valasek, M. (1996). Kinematics and dynamics of machinery. New York: Marcel Dekkar Inc.Google Scholar
  128. Stelzle, W., Kecskeméthy, A., & Hiller, M. (1995). A comparative study of recursive methods. Archive of Applied Mechanics, 66, 9–19.zbMATHGoogle Scholar
  129. Stewart, D., & Trinkle, J. (2000). An implicit time-stepping scheme for rigid body dynamics with coulomb friction. IEEE international conference on robotics and automation (pp. 162–169).Google Scholar
  130. Stokes, A., & Brockett, R. (1996). Dynamics of kinematic chains. International Journal of Robotics Research, 15, 393–405.CrossRefGoogle Scholar
  131. Strang, G. (1998). Linear algebra and its applications. Orlando: Harcourt, Brace, Jovanovich, Publisher.Google Scholar
  132. Uicker, Jr., J.J. (1965). On the dynamic analysis of spatial linkages using 4x4 matrices. Ph.D. thesis. Evanston: Northwestern University.Google Scholar
  133. Vereshchagin, A. F. (1975). Gauss principle of least constraint for modeling the dynamics of automatic manipulators using a digital computer. Soviet Physics – Doklady, 20(1), 33–34.zbMATHGoogle Scholar
  134. Vukobratovic, M., Borovac, B., Surla, D., & Stokic, D. (1989). Biped locomotion: Dynamics, stability, control and application. Berlin: Springer.Google Scholar
  135. Vukobratovic, M., Potkonjak, V., Babkovic, K., & Borovac, B. (2007). Simulation model of general human and humanoid motion. Multibody System Dynamics, 17(1), 71–96.MathSciNetzbMATHCrossRefGoogle Scholar
  136. Walker, M. W., & Orin, D. E. (1982). Efficient dynamic computer simulation of robotic mechanisms. ASME Journal of Dynamic Systems, Measurement and Control, 104, 205–211.zbMATHCrossRefGoogle Scholar
  137. Wehage, R. A., & Haug, E. J. (1982). Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems. ASME Journal of Mechanical Design, 104, 247–255.CrossRefGoogle Scholar
  138. Wittenburg, J. (2008). Dynamics of multibody systems. Berlin: Sprnger.zbMATHGoogle Scholar
  139. Yamane, K., & Nakamura, Y. (2002). Efficient parallel dynamics computation of human figures. IEEE International Conference on Robotics and Automation, 1, 530–537.Google Scholar
  140. Yen, J., & Petzold, L. R. (1998). An efficient Newton-type iteration for the numerical solution of highly oscillatory constrained multibody dynamic systems. SIAM Journal on Scientific Computing, 19(5), 1513–1534.MathSciNetzbMATHCrossRefGoogle Scholar
  141. Yoshikawa, T. (1985). Manipulability of robotic mechanisms. International Journal of Robotics Research, 4(2), 3–9.MathSciNetCrossRefGoogle Scholar
  142. Yu, Q., & Chen, I. M. (2000). A direct violation correction method in numerical simulation of constrained multibody systems. Computational Mechanics, 26(1), 52–57.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Suril Vijaykumar Shah
    • 1
  • Subir Kumar Saha
    • 2
  • Jayanta Kumar Dutt
    • 2
  1. 1.McGill UniversityMontrealCanada
  2. 2.Department of Mechanical EngineeringIIT DelhiNew DelhiIndia

Personalised recommendations