Skip to main content

X-farm: Modelling Sustainable Farming Systems

  • Chapter
  • First Online:
Methods and Procedures for Building Sustainable Farming Systems
  • 1343 Accesses

Abstract

The aim of this chapter is to illustrate the structure of X-farm, a model to manage farming systems under energetic, economical and ecological perspectives, using the dynamic simulation approach. The structure of X-farm is composed by some integrated modules representing the main centres of farming costs and production: soil management, crop production and processing and energy production and administration. The dynamic simulation is addressed to find the best combination of crop and livestock activities in the farm plan. The objective of energy production is afforded by using crops and reducing the energy use by optimising energy-saving techniques; the ecological objective is formulated by accounting the CO2 emissions; the economic objective is targeted to profit maximisation, constrained by the level of achievement of the energy and ecology targets. The dynamic simulation is expected to help in improving the farm management performance with the simultaneous achievement of the three objectives. Finally, combining the X-farm model with GIS techniques, the analysis will be expanded to the agro-district planning to support the regional strategy for agro-energy production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bechini, L., & Stöckle, C. O. (2007). Integration of a cropping systems simulation model and a relational database for simple farm-scale analyses. Agronomy Journal, 99, 1226–1237.

    Article  Google Scholar 

  • Byerlee, D., & Murgai, R. (2001 December). Sense and sustainability revisited: The limits of total factor productivity previous term measures next term of sustainable agricultural systems. Agricultural Economics, 26(3), 227–236.

    Article  Google Scholar 

  • Coleman, K., Jenkinson, D. S. (2008). RothC-26.3 A model for the turnover of carbon in soil – Model description and windows users guide. Rothamsted Research Harpenden, Herts AL5 2JQ. ISBA 0 951 445685.

    Google Scholar 

  • Danuso, F. (2003). SEMoLa: uno strumento per la modellazione degli agroecosistemi. Atti XXXV Convegno SIA. Napoli, 16–19(9/2003), 283–284.

    Google Scholar 

  • Danuso, F., Sandra, M. (2006). SemGrid: Land application of epidemiological and crop models. Pros. IX ESA Congress, 4–7 September 2006, Warszawa, Poland, pp. 631–632.

    Google Scholar 

  • Danuso, F., Franz, D., Bigot, L., Budoi, G. (1999). CSS: a modular software for cropping system simulation. Proceedings of the International Symposium “Modelling cropping systems”, ESA, Lleida, 21–23 June, 1999, Catalonia, Spain, pp. 287–288.

    Google Scholar 

  • Danuso, F., Rosa, F., Serafino, L., Vidoni, F. (2007). Modelling the agro-energy farm. Proceedings of the International Symposium “Farming system design 2007”, 10–12 September 2007 – Catania, Italy, pp 29–30.

    Google Scholar 

  • Danuso, F., Rocca, A., Andreoni, V., & Bulfoni, E. (2010). Simulation of the agro-energy farm with the X-farm model: Calibration of the crop module for sorghum yield. Italian Journal of Agronomy, 5, 3.

    Article  Google Scholar 

  • Donatelli, M., Acutis, M., Balderacchi, M., Barbieri, S., Bechini, L., Bellocchi, G., Bonera, R., Carlini, L., Danuso, F., Degli Esposti, D., Ditto, D., Fila, G., Fontana, F., Gentile, A., Mazzetto, F., Nasuelli, P. A., Sacco, P., Speroni, M., Trevisan, M., Vetrano, V., & Zuliani, M. (2006). Modelli per Sistemi Produttivi in Agricoltura. Bologna: Progetto SIPEAA, CRA-ISCI.

    Google Scholar 

  • Driessen, P. M. (1986). The water balance of the soil. In H. Van Keulen & J. Wolfs (Eds.), Modelling of agricultural production: Weather, soil and crops (p. 76). Wageningen: PUDOC.

    Google Scholar 

  • Forrester, J. (1961). Industrial dynamics (p. 464). Waltham: Pegasus Communications.

    Google Scholar 

  • FRIMAT. (2008). Tariffario lavorazioni meccanico-agricole della Toscana. Roma: UNIMA.

    Google Scholar 

  • Hartkamp, A. D., White, J. W., & Hoogenboom, G. (1999). Interfacing geographic information systems with agronomic modeling: A review. Agronomy Journal, 91, 761–772.

    Article  Google Scholar 

  • Hill, J., Nelson, E., Tilman, D., Polasky, S., & Tiffany, D. (2006). Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proceedings of the National Academy of Sciences of the United States of America, 103(30), 11206–11210.

    Article  CAS  Google Scholar 

  • Kim, S., & Dale, B. E. (2005). Life cycle assessment of integrated biorefinery-cropping system: All biomass is local. In J. Outlaw, K. J. Collins, & J. A. Duffield (Eds.), Agriculture as a producer and consumer of energy (p. 319). Cambridge, MA: CABI Publishing Co.

    Google Scholar 

  • Mazzetto, F., & Bonera, R. (2003). MEACROS: A tool for multi-criteria evaluation of alternative cropping systems. European Journal of Agronomy, 18, 379–387.

    Article  Google Scholar 

  • Muetzelfeldt, R., & Massheder, J. (2003). The Simile visual modelling environment. European Journal of Agronomy, 18(3–4), 345–358.

    Article  Google Scholar 

  • Pacini, C., Wossink, A., Giesen, G., Vazzana, C., & Huirne, R. (2003). Evaluation of sustainability of organic, integrated and conventional farming systems: A farm and field-scale analysis. Agriculture, Ecosystems & Environment, 95, 273–288.

    Article  Google Scholar 

  • Pimentel, D. (2003). Ethanol fuels: Energy balance, economics, and environmental impacts are negative. Natural Resources Research, 12(2), 127–134.

    Article  Google Scholar 

  • Pimentel, D., & Patzek, T. W. (2005 March). Ethanol production using corn, switchgrass, and wood; biodiesel production using soybean and sunflower. Natural Resources Research, 14(1), 65–76.

    Article  CAS  Google Scholar 

  • Rijtema, P. E. (1969). Soil moisture forecasting, Note 513. I.C.W. Wageningen, p. 18.

    Google Scholar 

  • Rosa, F. (2008). A LP model to manage the agro-energy system. 2nd International European Forum on Innovation and System Dynamics in Food Networks 2007. International Center for Food Chain and Network Research, University of Bonn, Germany.

    Google Scholar 

  • Rosa, F. (2009). The profitability of Biodiesel with different organization adjustments of the biodiesel chain organization. 4th International European Forum on System Dynamics and Innovation in Food Networks, Igls-Innsbruck.

    Google Scholar 

  • Rotz, A. C., Coiner, C. U. (2006). The integrated farm system model – Reference manual, Version 2.0. Pasture Systems and Watershed Management Research Unit – Agricultural Research Service – United Stated Department of Agriculture, 136 pp.

    Google Scholar 

  • Stöckle, C. O., & Nelson, R. (1994). The CropSyst user’s manual. Pullman: Biological Systems Engineering Department, Washington State University.

    Google Scholar 

  • Van Laar, H. H., Goudriaan, J., Van Keulen, H. (1997). SUCROS97: Simulation of crop growth for potential and water-limited production simulations – As applied to spring wheat. Quantitative Approaches in Systems Analysis, No. 14, September 1997.

    Google Scholar 

  • Van Wijk, M. T., Tittonell, P., Rufino, M. C., Herrero, M., De Ridder, N., Giller, K. E. (2006). FARMSIM: A dynamic livelihood model for analyzing management strategies in African smallholder farms. In: Tropentag 2006. International Research on Food Security, Natural Resource Management and Rural Development, Prosperity and Poverty in a Globalized World – Challenges for Agricultural Research. Bonn, Germany, 11–13 October, p. 331.

    Google Scholar 

  • Vayssières, J., Guerrin, F., Paillat, J. P., & Lecompte, P. (2009). GAMEDE: A global activity model for evaluating the sustainability of dairy enterprises Part I – Whole-Farm dynamic model. Agricultural Systems, 101, 128–138.

    Article  Google Scholar 

  • Venturi, P., & Venturi, G. (2003). Analysis of energy comparison for crops in European agricultural systems. Biomass and Bioenergy, 25, 235–255.

    Article  Google Scholar 

Download references

Acknowledgements

This research has been founded by the project “Valutazione della sostenibilità economica, energetica e ambientale delle filiere agroenergetiche”, ex art 17, LR n. 26, 10/11/2005 – Friuli-Venezia Giulia region. The meteorological service of the Friuli-Venezia Giulia region (OSMER) is to be acknowledged for the availability of meteorological data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvaro Rocca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rocca, A., Danuso, F., Rosa, F., Bulfoni, E. (2013). X-farm: Modelling Sustainable Farming Systems. In: Marta-Costa, A., Soares da Silva, E. (eds) Methods and Procedures for Building Sustainable Farming Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5003-6_13

Download citation

Publish with us

Policies and ethics