Alternative Explanations

  • G. Cornelis van Kooten


Surprisingly, there are many alternative explanations for observed changes in climate. In this chapter, these are categorized by whether they are cosmological in origin or not. Non-cosmological explanations include ocean events that impact the Earth’s climate, such as the Pacific Decadal Oscillation, El Niño and Atlantic Multi-decadal Oscillation. The feedback effect of CO2 warming on cloud formation is also important, as clouds reflect solar radiation back to space, which increases the Earth’s albedo and lowers global temperatures. Although cloud formation is a complex process that is not considered in climate models, the feedback effect due to water vapor (the most important greenhouse gas) is much diminished by clouds. Of the cosmological explanations considered in this chapter, those related to the sun are most important. Solar cycles impact the amount of radiation reaching Earth – the energy balance that affects temperatures. But the sun’s magnetic field also shields the Earth from cosmic rays that affect cloud formation – a reduction in the magnetic field has been shown to promote cloud formation, thereby cooling the globe. Also discussed in this chapter is the politicization of both climate science research (as found in the so-called climategate e-mails) and the IPCC process.


Solar Wind Coral Reef Pacific Decadal Oscillation Total Solar Irradiance Climate Scientist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adams, R. M., Rosenzweig, C., Peart, R. M., Richie, J. T., McCarl, B. A., Glyer, J. D., Curry, R. B., Jones, J. W., Boote, K. J., & Allen, L. H., Jr. (1990). Global climate change and US agriculture. Nature, 345(6272), 219–224.CrossRefGoogle Scholar
  2. Agoumi, A. (2003). Vulnerability of North African countries to climatic changes: Adaptation and implementation strategies for climatic change. Developing perspectives on climate change: Issues and analysis from developing countries and countries with economies in transition. Retrieved June 10, 2010,
  3. Bagla, P. (2009, November 13). No sign yet of Himalayan meltdown, Indian report finds. Science, 326(5955), 924–925.CrossRefGoogle Scholar
  4. Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M. N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., & Bonani, G. (2001, December 7). Persistent solar influence on North Atlantic climate during the Holocene. Science, 294(5549), 2130–2136.CrossRefGoogle Scholar
  5. Braun, H., Christl, M., Rahmstorf, S., Ganopolski, A., Mangini, A., Kubatzki, C., Roth, K., & Kromer, B. (2005, November 10). Possible solar origin of the 1,470-year glacial climate cycle demonstrated in a coupled model. Nature, 438(7065), 208–211.CrossRefGoogle Scholar
  6. Burgermeister, J. (2007). Missing carbon mystery: Case solved?. Nature Reports: Climate Change, 3, 36–37. doi: 10.1038/climate.2007.35.
  7. Carslaw, K. S., Harrison, R. G., & Kirby, J. (2002). Cosmic rays, clouds, and climate. Science, 298(5599), 1732–1737.CrossRefGoogle Scholar
  8. Cogley, J. G., Kargel, J. S., Kaser, G., & van der Veen, C. J. (2010, January 29). Tracking the source of glacier misinformation. Science, 327(5965), 522.CrossRefGoogle Scholar
  9. Darwin, R., Tsigas, M., Lewandrowski, J., & Raneses, A. (1995, June). World agriculture and climate change: Economic adaptations (AE Report No. 703, p. 86). Washington, DC: U.S. Department of Agriculture, Economic Research Service.Google Scholar
  10. de Jager, C. (2008). Solar activity and its influence on climate. Netherlands Journal of Geosciences, 87(3), 207–213.Google Scholar
  11. De Laat, A. T. J., & Maurellis, A. N. (2004). Industrial CO2 emissions as a proxy for anthropogenic influence on lower tropospheric temperature trends. Geophysical Research Letters, 31, L05204. doi: 10.1029/2003GL019024.CrossRefGoogle Scholar
  12. Delingpole, J. (2009, December 16). Climategate goes SERIAL: Now the Russians confirm that UK climate scientists manipulated data to exaggerate global warming. The Telegraph. Viewed June 8, 2010, from,
  13. Duhau, S., & de Jager, C. (2010, June). The forthcoming grand minimum of solar activity. Journal of Cosmology, 8, 1983–1999.Google Scholar
  14. Easterbrook, D. J. (2008, December). Solar influence on recurring global, decadal, climate cycles recorded by glacial fluctuations, ice cores, sea surface temperatures, and historic measurements over the past millennium. Abstract of American Geophysical Union annual meeting, San Francisco. Viewed September 1, 2010, from,
  15. Enghoff, M. B., Pedersen, J. O. P., Uggerhøj, U. I., Paling, S. M., & Svensmark, H. (2011). Aerosol nucleation induced by a high energy particle beam. Geophysical Research Letters, 38(L09805), 4. doi: doi:10.1029/2011GL047036.Google Scholar
  16. Fagan, B. M. (2000). The little ice age: how climate made history 1300–1850. New York: Basic Books.Google Scholar
  17. Folmer, H., & van Kooten, G. C. (2007). Deforestation. In B. Lomborg (Ed.), Solutions for the world’s biggest problems: Costs and benefits. Cambridge: Cambridge University Press.Google Scholar
  18. Ghosh, P., & Brand, W. A. (2003). Stable isotope ratio mass spectrometry in global climate change research. International Journal of Mass Spectrometry, 228(1), 1–33.CrossRefGoogle Scholar
  19. Hoegh-Guldberg, O., Mumby, O. J., Hooten, A. J., Steneck, R. S., Greenfield, P., Gomez, E., Harvell, C. D., Sale, P. F., Edwards, A. J., Caldeira, K., Knowlton, N., Eakin, C. M., Iglesias-Prieto, R., Muthigo, N., Bradbury, R. H., Dubi, A., & Hatziolos, M. E. (2007). Coral reefs under rapid climate change and ocean acidification. Science, 318(5857), 1737–1742.CrossRefGoogle Scholar
  20. Hoegh-Guldberg, O., Hoegh-Guldberg, H., Cesar, H., & Timmerman, A. (2000). Pacific in peril: Biological, economic and social impacts of climate change on Pacific coral reefs. Greenpeace (p. 72). Viewed June 6, 2010.
  21. Idso, C., & Singer, S. F. (2009). Climate change reconsidered: 2009 report of the Nongovernmental International Panel on Climate Change (NIPCC). Chicago: The Heartland Institute.Google Scholar
  22. IPCC WGI. (2007). Climate change 2007: The physical science basis – working group I contribution to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
  23. IPCC WGII. (2007). Climate change 2007: Impacts, adaptation and vulnerability – working group II contribution to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
  24. IPCC WGIII. (2007). Climate change 2007: Climate change mitigation – working group III contribution to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
  25. Kirkby, J. (2011, 25 August). Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation. Nature, 476, 429–433. doi: 10.1038/nature10343.CrossRefGoogle Scholar
  26. Knorr, W. (2009). Is the airborne fraction of anthropogenic CO2 emissions increasing? Geophysical Research Letters, 36, L21710. doi: 10.1029/2009GL040613.CrossRefGoogle Scholar
  27. Laframboise, D. (2011). The delinquent teenager who was mistaken for the world’s top climate expert. Toronto: Ivy Avenue Press.Google Scholar
  28. Lamb, H. H. (1995). Climate, history and the modern world (2nd ed.). New York: Taylor & Francis.Google Scholar
  29. Landsbaum, M. (2010, February 12). What to say to a global warming alarmist. Orange County Register. Viewed June 10, 2010, from
  30. Lindzen, R. S., & Choi, Y.-S. (2009). On the determination of climate feedbacks from ERBE data. Geophysical Research Letters, 36, L16705. doi: 10.1029/2009GL039628.CrossRefGoogle Scholar
  31. Lindzen, R. S., & Choi, Y.-S. (2011, February 12). On the observational determination of climate sensitivity and its implications. Asia-Pacific Journal of Atmospheric Sciences, 47(4), 377–390. doi:10.1007/s13143-011-0023-x.Google Scholar
  32. Lindzen, R. S., Chou, M.-D., & Hou, A. Y. (2001). Does the earth have an adaptive infrared iris? Bulletin of the American Meteorological Society, 82(3), 417–432.CrossRefGoogle Scholar
  33. Loehle, C. (2004). Climate change: Detection and attribution of trends from long-term geologic data. Ecological Modeling, 171(4), 433–450.CrossRefGoogle Scholar
  34. Loehle, C. (2009). Cooling of the global oceans since 2003. Energy & Environment, 20(1&2), 101–104.CrossRefGoogle Scholar
  35. Manning, A. C., Keeling, R. F., Katz, L. E., Paplawsky, W. J., & McEvoy, E. M. (2003). Interpreting seasonal cycles of atmospheric oxygen and carbon dioxide concentrations at American Samoa Observatory. Geophysical Research Letters, 30(6), 1333. doi:10.1029/2001GL014312.Google Scholar
  36. Matsui, T., & Pielke, R. A., Sr. (2006). Measurement-based estimation of the spatial gradient of aerosol radiative forcing. Geophysical Research Letters, 33, L11813. doi: 10.1029/2006GL025974.CrossRefGoogle Scholar
  37. McKitrick, R. (2010). Circling the bandwagons: My adventures correcting the IPCC. SPPI reprint series. Retrieved January 19, 2011,
  38. Mendelsohn, R., Morrison, W., Schlesinger, M. E., & Andronova, N. G. (2000). Country-specific market impacts of climate change. Climatic Change, 45(3–4), 553–569.CrossRefGoogle Scholar
  39. Milankovitch, M. (1941). Kanon der Erdbestrahlungen und seine Anwendung auf das Eiszeiten problem. Canon of insolation and the Ice Age problem (Israel Program for Scientific Translations, Trans. 1969 ed.). Springfield: U.S. Dept. of Commerce, Clearinghouse for Federal Scientific and Technical Information.Google Scholar
  40. Montford, A. W. (2010). The hockey stick illusion: Climate and the corruption of science. London: Stacey International.Google Scholar
  41. National Research Council. (2005). Radiative forcing of climate change: Expanding the concept and addressing uncertainties. Committee on Radiative Forcing Effects on Climate Change, Climate Research Committee, Board on Atmospheric Sciences and Climate, Division on Earth and Life Studies. Washington, DC: The National Academic Press.Google Scholar
  42. Niyogi, D., Chang, J.-I., Saxena, V. K., Holt, T., Alapaty, K., Booker, F., Chen, F., Davis, K. J., Holben, B., Matsui, T., Meyers, T., Oechel, W. C., Pielke, R. A., Sr., Wells, R., Wilson, K., & Xue, Y. (2004). Direct observations of the effects of aerosol loading on net ecosystems CO2 exchanges over different landscapes. Geophysical Research Letters, 31, L20506. doi: 10.1029/2004GL020915.CrossRefGoogle Scholar
  43. O’Dowd, C. D., Jimenez, J. L., Bahreini, R., Flagan, R. C., Seinfeld, J. H., Hämeri, K., Pirjola, L., Kulmala, M., Jennings, S. G., & Hoffmann, T. (2002, June 6). Marine aerosol formation from biogenic iodine emissions. Nature, 417(6889), 632–636.CrossRefGoogle Scholar
  44. Oreskes, N. (2004, December 3). The scientific consensus on climate change. Science, 306(5702), 1686.CrossRefGoogle Scholar
  45. Pielke, R. A., Sr., Beven, K., Brasseur, G., Calvert, J., Chyahine, M., Dickerson, R. R., Entekhabi, D., Foufoula-Georgiou, E., Guptak, H., Gupta, B., Krajewski, W., Krider, E. P., Lau, W. K. M., McDonnell, J., Rossow, W., Schaake, J., Smith, J., Sorooshian, S., & Wood, E. (2009). Climate change: the need to consider human forcings besides greenhouse gases. EOS, Transactions American Geophysical Union, 90(45), 413. doi: 10.1029/2009EO450008.CrossRefGoogle Scholar
  46. Ridley, M. (2010, June 15). Threat from ocean acidification greatly exaggerated. The Rational Optimist. Viewed June 19, 2010, from
  47. Rodolfo-Metalpa, R., Martin, S., Ferrier-Pagès, C., & Gattuso, J.-P. (2010). Response of the temperate coral Cladocora caespitosa to mid- and long-term exposure to pCO2 and temperature levels projected for the year 2100 AD. Biogeosciences, 7, 289–300.CrossRefGoogle Scholar
  48. Rose, D. (2010, January 24). Glacier scientist: I knew data hadn’t been verified. Viewed June 10, 2010, from
  49. Scafetta, N. (2009). Empirical analysis of the solar contribution to global mean air surface temperature change. Journal of Atmospheric and Solar-Terrestrial Physics, 71(17–18), 1916–1923. doi: 10.1016/j.jastp. 2009.07.007.CrossRefGoogle Scholar
  50. Scafetta, N. (2010, March 18). Climate change and its causes: A discussion about some key issues. Science and Public Policy Institute (SPPI) Paper. Retrieved August 24, 2010,
  51. Scafetta, N., & West, B. J. (2007). Phenomenological reconstructions of the solar signature in the northern hemisphere surface temperature records since 1600. Journal of Geophysical Research, 112, D24S03. doi: 10.1029/2007JD008437.CrossRefGoogle Scholar
  52. Scafetta, N., & West, B. J. (2008). Is climate sensitive to solar variability? Physics Today, 61(3), 50–51.CrossRefGoogle Scholar
  53. Schimmelpfenning, D., Lewandrowski, J., Reilly, J., Tsigas, M., & Parry, I. (1996). Agricultural adaptation to climate change: Issues of long-run sustainability (Agric. Econ. Report 740, p. 57). Washington, DC: USDA Economic Research Service.Google Scholar
  54. Sciare, J., Mihalopoulos, N., & Dentener, J. F. (2000). Interannual variability of atmospheric dimethylsulfide in the Southern Indian Ocean. Journal of Geophysical Research, 105(D21), 26369–26377. doi: 10.1029/2000JD900236.CrossRefGoogle Scholar
  55. Shaviv, N., & Veizer, J. (2003). Celestial driver of Phanerozoic climate? GSA Today, 13(7), 4–10.CrossRefGoogle Scholar
  56. Soares-Filho, B. S., Nepstad, D. C., Curran, L. M., Cerqueira, G. C., Garcia, R. A., Ramos, C. A., Voll, E., McDonald, A., Lefebvre, P., Schlesinger, M. E., & McGrath, D. (2005). Cenários de desmatamento para a Amazônia. Estudos Avançados, 19(54), 137–152. doi: 10.1590/S0103-40142005000200008.CrossRefGoogle Scholar
  57. Soares-Filho, B. S., Nepstad, D. C., Curran, L. M., Cerqueira, G. C., Garcia, R. A., Ramos, C. A., Voll, E., McDonald, A., Lefebvre, P., & Schlesinger, P. (2006). Modeling conservation in the Amazon Basin. Nature, 440(7083), 520–523.CrossRefGoogle Scholar
  58. Soon, W. W.-H. (2005). Variable solar irradiance as a plausible agent for multidecadal variations in the arctic-wide surface air temperature record of the past 130 years. Geophysical Research Letters, 32, L1672. doi: 10.1029/2005GL023429.CrossRefGoogle Scholar
  59. Soon, W. W.-H. (2009). Solar arctic-mediated climate variation on multidecadal to centennial timescales: empirical evidence, mechanistic explanation, and testable consequences. Physical Geography, 30(2), 144–148.CrossRefGoogle Scholar
  60. Spencer, R. W., Braswell, W. D., Christy, J. R., & Hnilo, J. (2007). Cloud and radiation budget changes associated with tropical intraseasonal oscillations. Geophysical Research Letters, 34, L15707. doi: 10.1029/2007GL029698.CrossRefGoogle Scholar
  61. Sud, Y. C., Walker, G. K., & Lau, K.-M. (1999). Mechanisms regulating deep moist convection and sea-surface temperatures in the tropics. Geophysical Research Letters, 26(8), 1019–1022.CrossRefGoogle Scholar
  62. Svensmark, H., & Calder, N. (2007). The chilling stars: A new theory of climate change. Cambridge: Icon Books Ltd.Google Scholar
  63. Svensmark, H., & Friis-Christensen, E. (1997). Variation of cosmic ray flux and global cloud coverage – A missing link in solar-climate relationships. Journal of Atmospheric and Solar-Terrestrial Physics, 59(11), 1225–1232.CrossRefGoogle Scholar
  64. Travis, D. J., Carleton, A. M., Johnson, J. S., & DeGrand, J. Q. (2007). U.S. jet contrail frequency changes: Influences of jet aircraft flight activity and atmospheric conditions. International Journal of Climatology, 27(5), 621–632. doi: 10.1002/joc.1418.CrossRefGoogle Scholar
  65. van Kooten, G. C., & Bulte, E. H. (2000). The economics of nature: Managing biological assets. Oxford: Blackwell Publishers.Google Scholar
  66. van Kooten, G. C., & Folmer, H. (2004). Land and forest economics. Cheltenham: Edward Elgar.Google Scholar
  67. van Soest, D. P., Bulte, E. H., Angelsen, A., & van Kooten, G. C. (2002). Opening Pandora’s box? Technological change and deforestation. Environment & Development Economics, 7(2), 73–84.Google Scholar
  68. Weaver, A. (2008). Keeping our cool: Canada in a warming world. Toronto: Viking Canada/Penguin Group.Google Scholar
  69. Wegman, E. J., Scott, D. W., & Said, Y. H. (2006). Ad hoc committee report on the ‘Hockey Stick’ global climate reconstruction. Retrieved October 16, 2009,
  70. Wingenter, O. W., Haase, K. B., Zeigler, M., Blake, D. R., Rowland, F. S., Sive, B. C., Paulino, A., Thyrhaug, R., Larsen, A., Schultz, K., Meyerhöfer, M., & Riebesell, U. (2007). Unexpected consequences of increasing CO2 and ocean acidity on marine production of DMS and CH2CII: Potential climate impacts. Geophysical Research Letters, 34, L05710. doi: 10.1029/2006GL028139.CrossRefGoogle Scholar
  71. WWF (WorldWildlife Fund). (2005). An overview of glaciers, glacier retreat, and subsequent impacts in Nepal, India and China (80 pp.). WWF Nepal Programme. Viewed June 8, 2010, from

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • G. Cornelis van Kooten
    • 1
  1. 1.Department of EconomicsUniversity of VictoriaVictoriaCanada

Personalised recommendations