From Superconductivity Towards Thermoelectricity: Ge-Based Skutterudites

  • S. Humer
  • E. Royanian
  • H. Michor
  • E. Bauer
  • A. Grytsiv
  • M. X. Chen
  • R. Podloucky
  • P. Rogl
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


We report on a substitution of Ge by Sb in \(\mathrm {LaPt_4Ge_{12}}\), which significantly changes ground state properties, from a superconducting state below \(T_c = 8\) K for \(\mathrm {LaPt_4Ge_{12}}\) to a nearly insulating state in \(\mathrm {LaPt_4Ge_{7}Sb_5}\). Evidence for this crossover is from electronic structure calculations based on VASP and is reflected in the specific heat, electrical resistivity and the Seebeck data as well. This electron-doping drives a well behaving metal with poor thermoelectric properties towards a bad metal, in the proximity of a metal-to-insulator transition with a substantially enhanced Seebeck effect. Results derived for \(\mathrm {LaPt_4Ge_{12-x}Sb_x}\) can serve as feedback to improve the thermoelectric performance of technologically interesting multicomponent skutterudites.


Fermi Energy Seebeck Coefficient Thermoelectric Material Electronic Structure Calculation Charge Carrier Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    D. T. Morelli and G. P. Meisner, J. Appl. Phys. 77, 3777 (1995).Google Scholar
  2. 3.
    G. S. Nolas, J. L. Cohn, and G. A. Slack, Phys. Rev. B 58, 164 (1998).Google Scholar
  3. 4.
    Y. Aoki, T. Tayama, T. Sakakibara, K. Kuwahara, K. Iwasa, M. Kohgi, W. Higemoto, D. E. MacLaughlin, H. Sugawara, and H. Sato, J. Phys. Soc. Jpn. 76, 051006 (2007).Google Scholar
  4. 5.
    N. Takeda and M. Ishikawa: J. Phys. Soc. Jpn. 69, 868 (2000).Google Scholar
  5. 6.
    A. Yamamoto, S. Wada, I. Shirotani, and C. Sekine, J. Phys. Soc. Jpn. 75, 063703 (2006).Google Scholar
  6. 7.
    C. Sekine, T. Uchiumi, I. Shirotani, and T. Yagi, Phys. Rev. Lett. 79, 3218 (1997).Google Scholar
  7. 8.
    C. Sekine, T. Uchiumi, I. Shirotani, and T. Yagi, Science and Technology of High Pressure, ed. M. H. Manghnani, W. J. Nellis and M. F. Nicol, Universities Press, Hyderabad, India, 826 (2000).Google Scholar
  8. 9.
    M.Yoshizawa, Y.Nakanishi, M.Oikawa, C.Sekine, I. Shirotani, S. R. Saha, H. Sugawara, and H. Sato, J. Phys. Soc. Jpn. 74, 2141 (2005).Google Scholar
  9. 10.
    Binghai Yan, Lukas Müchler, Xiao-Liang Qi, Shou-Cheng Zhang and Claudia Felser, arXiv:1104.0641v1Google Scholar
  10. 11.
    J. C. Smith, S. Banerjee, V. Pardo, and W. E. Pickett, Phys. Rev. Lett. 106, 056401 (2011).Google Scholar
  11. 12.
    W.Jeitschko and D. Braun, Acta Crystallogr., Sect B 33, 3401 (1977).Google Scholar
  12. 13.
    G.A. Slack and V. Tsoukala, J. Appl. Phys. 76, 1665 (1994).Google Scholar
  13. 14.
    G. Rogl, A. Grytsiv, P. Rogl, E. Bauer, M.B. Kerber, M. Zehetbauer, and S. Puchegger, Intermetallics 18, 394 (2010).Google Scholar
  14. 15.
    L. Zhang, A. Grytsiv, and P. Rogl, J. Phys.: Appl. Phys. 42, 225405 (2009).Google Scholar
  15. 16.
    G. Rogl, A. Grytsiv, N. Melnychenko-Koblyuk, E. Bauer, and P. Rogl, J. Phys.: Cond. Mat., 23 275601 (2011).Google Scholar
  16. 17.
    G. Rogl, M. Zehetbauer, A. Grytsiv, P. Rogl, and E. Bauer, “High Pressure Torsion (HPT) a new route to high ZTs?”, oral presentation at the 30th International Conference on Thermoelectrics, Traverse City, Michigan, USA July 17–21, (2011).Google Scholar
  17. 18.
    E. Bauer, A. Grytsiv, Xing-Qiu Chen, N. Melnychenko-Koblyuk, G. Hilscher, H. Kaldarar, H. Michor, E. Royanian, G. Giester, M. Rotter, R. Podloucky, and P. Rogl, Phys. Rev. Lett. 99, 217001 (2007).Google Scholar
  18. 22.
    D. Kaczorowski and V. H. Tran, Phys. Rev. B 77, 180504 (2008).Google Scholar
  19. 23.
    A. Maisuradze, W. Schnelle, R. Khasanov, R. Gumeniuk, M. Nicklas, H. Rosner, A. Leithe-Jasper, Yu. Grin, A. Amato, and P. Thalmeier, Phys. Rev. B 82, 024524 (2010).Google Scholar
  20. 24.
    S. Humer, Diploma thesis, TU Wien, 2011.Google Scholar
  21. 25.
    E. Bauer, St. Berger, Ch. Paul, M. Della Mea, G. Hilscher, H. Michor, M. Reissner, W. Steiner, A. Grytsiv, P. Rogl, and W. Scheidt, Phys. Rev. B 66, 214421 (2002).Google Scholar
  22. 26.
    G. Kresse and J. Furthmüller, Phys. Rev. B 54 11169 (1996).Google Scholar
  23. 27.
    G. Kresse and J. Furthmüller, J. Comput. Mater. Sci. 6 15 (1996).Google Scholar
  24. 28.
    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys Rev Lett 773865 (1996).Google Scholar
  25. 29.
    P.E. Blöchl, Phys Rev B 50, 17953 (1994).Google Scholar
  26. 30.
    G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).Google Scholar
  27. 31.
    G.K. Madsen and D.J. Singh, J. Comput. Mater Sci. 175, 67 (2006).Google Scholar
  28. 32.
    I. Zeiringer, MingXing Chen, I. Bednar, E. Royanian, E. Bauer, R. Podloucky, A. Grytsiv, P. Rogl and H. Effenberger, Acta Materialia 59, 2368 (2011).Google Scholar
  29. 33.
    I. Zeiringer, MingXing Chen, A. Grytsiv, E. Bauer, R. Podloucky, H. Effenberger, P. Rogl, Acta Materialia 60, 2324 (2012).Google Scholar
  30. 34.
    O. Gunnarsson, M. Calandra, and J.E. Han, Rev. Mod. Phys. 75, 1085 (2003).Google Scholar
  31. 35.
    F.J. Blatt, in Physics of electronic conduction in solids, McGraw-Hill Book Company - New York (1968).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • S. Humer
    • 1
  • E. Royanian
    • 1
  • H. Michor
    • 1
  • E. Bauer
    • 1
  • A. Grytsiv
    • 2
  • M. X. Chen
    • 2
  • R. Podloucky
    • 2
  • P. Rogl
    • 2
  1. 1.Institute of Solid State PhysicsVienna University of TechnologyWienAustria
  2. 2.Institute of Physical ChemistryUniversity ViennaWienAustria

Personalised recommendations