Advertisement

Thermopower of the Correlated Narrow Gap Semiconductor FeSi and Comparison to RuSi

  • Jan M. Tomczak
  • K. Haule
  • G. Kotliar
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

Iron based narrow gap semiconductors such as FeSi, FeSb2, or FeGa3have received a lot of attention because they exhibit a large thermopower, as well as striking similarities to heavy fermion Kondo insulators. Many proposals have been advanced, however, lacking quantitative methodologies applied to this problem, a consensus remained elusive to date. Here, we employ realistic many-body calculations to elucidate the impact of electronic correlation effects on FeSi. Our methodology accounts for all substantial anomalies observed in FeSi: the metallization, the lack of conservation of spectral weight in optical spectroscopy, and the Curie susceptibility. In particular, we find a very good agreement for the anomalous thermoelectric power. Validated by this congruence with experiment, we further discuss a new physical picture of the microscopic nature of the insulator-to-metal crossover. Indeed, we find the suppression of the Seebeck coefficient to be driven by correlation induced incoherence. Finally, we compare FeSi to its iso-structural and iso-electronic homologue RuSi, and predict that partially substituted Fe1 − x Ru x Si will exhibit an increased thermopower at intermediate temperatures.

Keywords

Thermoelectric Property Seebeck Coefficient Spectral Weight Thermoelectric Performance Electronic Correlation Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank F. Steglich, P. Sun, and S. Paschen for stimulating discussions. JMT further acknowledges IICAM travel support through the NATO advanced workshop “The New Materials for Thermoelectric Applications: Theory and Experiment” in Hvar, as well as the hospitality at MPI CPfS, Dresden. The authors were supported by the NSF-materials world network under grant number NSF DMR 0806937 and NSF DMR 0906943, and by the PUF program. Acknowledgment is also made to the donors of the American Chemical Society Petroleum Research Fund 48802 for partial support of this research.

References

  1. [1]
    Jaccarino V, Wertheim GK, Wernick JH, Walker LR, Arajs S (1967) Paramagnetic excited state of FeSi. Phys Rev 160(3):476–482ADSCrossRefGoogle Scholar
  2. [2]
    Schlesinger Z, Fisk Z, Hai-Tao Zhang, Maple MB, DiTusa J, Aeppli G (1993) Unconventional charge gap formation in FeSi. Phys Rev Lett 71(11):1748–1751ADSCrossRefGoogle Scholar
  3. [3]
    Degiorgi L, Hunt MB, Ott HR, Dressel M, Feenstra BJ, Grüner G, Fisk Z, Canfield P (1994) Optical evidence of Anderson-Mott localization in FeSi. Europhys Lett 28(5):341ADSCrossRefGoogle Scholar
  4. [4]
    Paschen S, Felder E, Chernikov MA, Degiorgi L, Schwer H, Ott HR, Young DP, Sarrao JL, Fisk Z (1997) Low-temperature transport, thermodynamic, and optical properties of FeSi. Phys Rev B 56(20):12916–12930ADSCrossRefGoogle Scholar
  5. [5]
    Wolfe R, Wernick JH, Haszko SE (1965) Thermoelectric properties of FeSi. Phys Lett 19(6):449–450ADSCrossRefGoogle Scholar
  6. [6]
    Takagi S, Yasuoka H, Ogawa S, Wernick JH (1981) 29si nmr studies of an “unusual” paramagnet FeSi – Anderson localized state model–. J Phys Soc Jpn 50(8):2539–2546ADSCrossRefGoogle Scholar
  7. [7]
    Fisk Z, Aeppli G (1992) Kondo insulators. Comments Cond Mat Phys 16:150–170Google Scholar
  8. [8]
    Schlesinger Z, Fisk Z, Hai-Tao Zhang, Maple MB (1997) Is FeSi a Kondo insulator? Phys B 237–238:460–462. Proceedings of the Yamada conference XLV, the international conference on the physics of transition metalsGoogle Scholar
  9. [9]
    Mandrus D, Sarrao JL, Migliori A, Thompson JD, Fisk Z (1995) Thermodynamics of FeSi. Phys Rev B 51(8):4763–4767ADSCrossRefGoogle Scholar
  10. [10]
    Varma CM (1994) Aspects of strongly correlated insulators. Phys Rev B 50(14):9952–9956ADSCrossRefGoogle Scholar
  11. [11]
    Takahashi Y, Moriya T (1979) A theory of nearly ferromagnetic semiconductors. J Phys Soc Jpn 46(5):1451–1459ADSCrossRefGoogle Scholar
  12. [12]
    Anisimov VI, Yu Ezhov S, Elfimov IS, Solovyev IV, Rice TM (1996) Singlet semiconductor to ferromagnetic metal transition in FeSi. Phys Rev Lett 76(10):1735–1738ADSCrossRefGoogle Scholar
  13. [13]
    van der Marel D, Damascelli A, Schulte K, Menovsky AA (1998) Spin, charge, and bonding in transition metal mono-silicides. Phys B 244:138–147. Proceedings of LEESGoogle Scholar
  14. [14]
    Jarlborg T (1999) Electronic structure and properties of pure and doped ε-FeSi from ab initio local-density theory. Phys Rev B 59(23):15002–15012ADSCrossRefGoogle Scholar
  15. [15]
    Sales BC, Delaire O, McGuire MA, May AF (2011) Thermoelectric properties of Co-, Ir-, and Os-doped FeSi alloys: evidence for strong electron-phonon coupling. Phys Rev B 83(12):125209ADSCrossRefGoogle Scholar
  16. [16]
    Delaire O, Marty K, Stone MB, Kent PRC, Lucas MS, Abernathy DL, Mandrus D, Sales BC (2011) Phonon softening and metallization of a narrow-gap semiconductor by thermal disorder. Proc Natl Acad Sci USA 108(12):4725–4730ADSCrossRefGoogle Scholar
  17. [17]
    Buschinger B, Geibel C, Steglich F, Mandrus D, Young D, Sarrao JL, Fisk Z (1997) Transport properties of FeSi. Phys B 230–232:784–786. Proceedings of SCESGoogle Scholar
  18. [18]
    Bentien A, Johnsen S, Madsen GKH, Iversen BB, Steglich F (2007) Colossal seebeck coefficient in strongly correlated semiconductor FeSb2. Europhys Lett 80(1):17008 (5pp)Google Scholar
  19. [19]
    Sun P, Oeschler N, Johnsen S, Iversen Bo B, Steglich F (2010) Narrow band gap and enhanced thermoelectricity in FeSb2. Dalton Trans 39(4):1012–1019CrossRefGoogle Scholar
  20. [20]
    Sun P, Oeschler N, Johnsen S, Iversen Bo B, Steglich F (2009) Huge thermoelectric power factor: FeSb2versus FeAs2and RuSb2. Appl Phys Express 2(9):091102ADSCrossRefGoogle Scholar
  21. [21]
    Tomczak JM, Haule K, Miyake T, Georges A, Kotliar G (2010) Thermopower of correlated semiconductors: application to FeAs2and FeSb2. Phys Rev B 82(8):085104ADSCrossRefGoogle Scholar
  22. [22]
    Hadano Y, Narazu S, Avila MA, Onimaru T, Takabatake T (2009) Thermoelectric and magnetic properties of a narrow-gap semiconductor FeGa3. J Phys Soc Jpn 78(1):013702ADSCrossRefGoogle Scholar
  23. [23]
    Kotliar G, Savrasov SY, Haule K, Oudovenko VS, Parcollet O, Marianetti CA (2006) Electronic structure calculations with dynamical mean-field theory. Rev Mod Phys 78(3): 865–951ADSCrossRefGoogle Scholar
  24. [24]
    Tomczak JM, Haule K, Kotliar G (2012) Signatures of correlation effects in iron silicide. Proc Natl Acad Sci USA 109(9):3243ADSCrossRefGoogle Scholar
  25. [25]
    Damascelli A, Schulte K, van der Marel D, Menovsky AA (1997) Infrared spectroscopic study of phonons coupled to charge excitations in FeSi. Phys Rev B 55:R4863–R4866ADSCrossRefGoogle Scholar
  26. [26]
    Menzel D, Popovich P, Kovaleva NN, Schoenes J, Doll K, Boris AV (2009) Electron-phonon interaction and spectral weight transfer in Fe1 − xCoxSi. Phys Rev B 79(16):165111ADSCrossRefGoogle Scholar
  27. [27]
    Kokalj A (1999) Xcrysden a new program for displaying crystalline structures and electron densities. J Mol Graph Model 17(3–4):176–179CrossRefGoogle Scholar
  28. [28]
    Mattheiss LF, Hamann DR (1993) Band structure and semiconducting properties of FeSi. Phys Rev B 47(20):13114–13119ADSCrossRefGoogle Scholar
  29. [29]
    Blaha P, Schwarz K, Madsen G-K-H, Kvasnicka D, Luitz J (2001) Wien2k, an augmented plane wave plus local orbitals program for calculating crystal properties. Vienna University of Technology, Austria. ISBN 3-9501031-1-2Google Scholar
  30. [30]
    Mazurenko VV, Shorikov AO, Lukoyanov AV, Kharlov K, Gorelov E, Lichtenstein AI, Anisimov VI (2010) Metal-insulator transitions and magnetism in correlated band insulators: FeSi and Fe1 − xCoxSi. Phys Rev B 81(12):125131ADSCrossRefGoogle Scholar
  31. [31]
    Haule K, Yee C-H, Kim K (2010) Dynamical mean-field theory within the full-potential methods: electronic structure of CeIrIn5, CeCoIn5, and CeRhIn5. Phys Rev B 81(19):195107ADSCrossRefGoogle Scholar
  32. [32]
    Kutepov A, Haule K, Savrasov SY, Kotliar G (2010) Self-consistent GWdetermination of the interaction strength: application to the iron arsenide superconductors. Phys Rev B 82:045105ADSCrossRefGoogle Scholar
  33. [33]
    Haule K (2007) Quantum monte carlo impurity solver for cluster dynamical mean-field theory and electronic structure calculations with adjustable cluster base. Phys Rev B 75(15):155113ADSCrossRefGoogle Scholar
  34. [34]
    Werner P, Comanac A, de’ Medici L, Troyer M, Millis AJ (2006) Continuous-time solver for quantum impurity models. Phys Rev Lett 97(7):076405Google Scholar
  35. [35]
    Klein M, Zur D, Menzel D, Schoenes J, Doll K, Röder J, Reinert F (2008) Evidence for itineracy in the anticipated Kondo insulator FeSi: a quantitative determination of the band renormalization. Phys Rev Lett 101(4):046406ADSCrossRefGoogle Scholar
  36. [36]
    Arita M, Shimada K, Takeda Y, Nakatake M, Namatame H, Taniguchi M, Negishi H, Oguchi T, Saitoh T, Fujimori A, Kanomata T (2008) Angle-resolved photoemission study of the strongly correlated semiconductor FeSi. Phys Rev B 77(20):205117ADSCrossRefGoogle Scholar
  37. [37]
    Mahan GD, Sofo JO (1996) The best thermoelectric. Proc Natl Acad Sci USA 93(15): 7436–7439ADSCrossRefGoogle Scholar
  38. [38]
    Fu C, Doniach S (1995) Model for a strongly correlated insulator: FeSi. Phys Rev B 51(24):17439–17445ADSCrossRefGoogle Scholar
  39. [39]
    Yang K-Y, Yamashita Y, Läuchli AM, Sigrist M, Rice TM (2011) Microscopic model for the semiconductor-to-ferromagnetic-metal transition in FeSi1 − xGexalloys. Europhys Lett 95(4):47007ADSCrossRefGoogle Scholar
  40. [40]
    Haule K, Kotliar G (2009) Coherence-incoherence crossover in the normal state of iron oxypnictides and importance of Hund’s rule coupling. New J Phys 11(2):025021CrossRefGoogle Scholar
  41. [41]
    Mravlje J, Aichhorn M, Miyake T, Haule K, Kotliar G, Georges A (2011) Coherence-incoherence crossover and the mass-renormalization puzzles in Sr2RuO4. Phys Rev Lett 106:096401ADSCrossRefGoogle Scholar
  42. [42]
    Yin ZP, Haule K, Kotliar G (2011) Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides. Nat Mater 10(12):932. preprint: arXiv1104.3454Google Scholar
  43. [43]
    Kunes J, Lukoyanov AV, Anisimov VI, Scalettar RT, Pickett WE (2008) Collapse of magnetic moment drives the Mott transition in MnO. Nat Mater 7(3):198ADSCrossRefGoogle Scholar
  44. [44]
    Tomczak JM, Miyake T, Aryasetiawan F (2010) Realistic many-body models for manganese monoxide under pressure. Phys Rev B 81(11):115116ADSCrossRefGoogle Scholar
  45. [45]
    Raccah PM, Goodenough JB (1967) First-order localized-electron \(< -- >\)collective-electron transition in LaCoO3. Phys Rev 155(3):932–943ADSCrossRefGoogle Scholar
  46. [46]
    Kuneš J, Křápek V (2011) Disproportionation and metallization at low-spin to high-spin transition in multiorbital Mott systems. Phys Rev Lett 106(25):256401ADSCrossRefGoogle Scholar
  47. [47]
    Schweitzer H, Czycholl G (1991) Resistivity and thermopower of heavy-fermion systems. Phys Rev Lett 67(26):3724–3727ADSCrossRefGoogle Scholar
  48. [48]
    Oudovenko VS, Kotliar G (2002) Thermoelectric properties of the degenerate Hubbard model. Phys Rev B 65(7):075102ADSCrossRefGoogle Scholar
  49. [49]
    Oudovenko VS, Pálsson G, Haule K, Kotliar G, Savrasov SY (2006) Electronic structure calculations of strongly correlated electron systems by the dynamical mean-field method. Phys Rev B 73(3):035120ADSCrossRefGoogle Scholar
  50. [50]
    Saso T, Urasaki K (2002) Seebeck coefficient of Kondo insulators. J Phys Soc Jpn 71S(Supplement):288–290Google Scholar
  51. [51]
    Held K, Arita R, Anisimov VI, Kuroki K (2009) The lda+dmft route to identify good thermoelectrics. In: Zlatic V, Hewson AC, (eds) Properties and applications of thermoelectric materials. NATO science for peace and security series B: physics and biophysics, pp 141–157. Springer, Netherlands. doi:10.1007/978-90-481-2892-1_9Google Scholar
  52. [52]
    Haule K, Kotliar G (2009) Thermoelectrics near the Mott localization–delocalization transition. In: Properties and applications of thermoelectric materials, Proceedings of the NATO advanced research workshop on properties and application of thermoelectric materials, Hvar, Croatia, 21–26 Sept 2008. NATO science for peace and security series B: physics and biophysics. Springer, Netherlands, pp 119–131Google Scholar
  53. [53]
    Hohl H, Ramirez AP, Goldmann C, Ernst G, Bucher E (1998) Transport properties of RuSi, RuGe, OsSi, and quasi-binary alloys of these compounds. J Alloys Compd 278(1–2):39–43CrossRefGoogle Scholar
  54. [54]
    Herzog A, Marutzky M, Sichelschmidt J, Steglich F, Kimura S, Johnsen S, Iversen BB (2010) Strong electron correlations in FeSb2: an optical investigation and comparison with RuSb2. Phys Rev B 82:245205ADSCrossRefGoogle Scholar
  55. [55]
    Buschinger B, Guth W, Weiden M, Geibel C, Steglich F, Vescoli V, Degiorgi L, Wassilew-Reul C (1997) Rusi: metal-semiconductor transition by change of structure. J Alloys Compd 262–263:238–242. Proceedings of the twelfth international conference on solid compounds of transition elementsGoogle Scholar
  56. [56]
    Vescoli V, Degiorgi L, Buschinger B, Guth W, Geibel C, Steglich F (1998) The optical properties of RuSi: Kondo insulator or conventional semiconductor? Solid State Commun 105(6):367–370ADSCrossRefGoogle Scholar
  57. [57]
    Mani A, Bharathi A, Mathi Jaya S, Reddy GLN, Sundar CS, Hariharan Y (2002) Evolution of the Kondo insulating gap in Fe1 − xRuxSi. Phys Rev B 65:245206ADSCrossRefGoogle Scholar
  58. [58]
    Imai Y, Watanabe A (2006) Electronic structures of platinum group elements silicides calculated by a first-principle pseudopotential method using plane-wave basis. J Alloys Compd 417(1–2):173–179CrossRefGoogle Scholar
  59. [59]
    Zhao YN, Han HL, Yu Y, Xue WH, Gao T (2009) First-principles studies of the electronic and dynamical properties of monosilicides MSi (M = Fe, Ru, Os). Europhys Lett 85(4):47005ADSCrossRefGoogle Scholar
  60. [60]
    Shaposhnikov V, Migas D, Borisenko V, Dorozhkin N (2009) Features of the band structure for semiconducting iron, ruthenium, and osmium monosilicides. Semiconductors 43:142–144ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Physics and AstronomyRutgers UniversityPiscatawayUSA

Personalised recommendations