The Out-of-Equilibrium Time-Dependent Gutzwiller Approximation

  • Michele Fabrizio
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)


We review the recently proposed extension of the Gutzwiller approximation (Schirò and Fabrizio, Phys Rev Lett 105:076401, 2010), designed to describe the out-of-equilibrium time-evolution of a Gutzwiller-type variational wave function for correlated electrons. The method, which is strictly variational in the limit of infinite lattice-coordination, is quite general and flexible, and it is applicable to generic non-equilibrium conditions, even far beyond the linear response regime. As an application, we discuss the quench dynamics of a single-band Hubbard model at half-filling, where the method predicts a dynamical phase transition above a critical quench that resembles the sharp crossover observed by time-dependent dynamical mean field theory. We next show that one can actually define in some cases a multi-configurational wave function combination of a whole set of mutually orthogonal Gutzwiller wave functions. The Hamiltonian projected in that subspace can be exactly evaluated and is equivalent to a model of auxiliary spins coupled to non-interacting electrons, closely related to the slave-spin theories for correlated electron models. The Gutzwiller approximation turns out to be nothing but the mean-field approximation applied to that spin-fermion model, which displays, for any number of bands and integer fillings, a spontaneous Z 2 symmetry breaking that can be identified as the Mott insulator-to-metal transition.



These proceedings are based on the work that I have done in collaboration with Marco Schirò, whom I thank warmly. I am also grateful to Nicola Lanatà for useful discussions. I also acknowledge support by the EU under the project GOFAST.


  1. 1.
    Giannetti G, Cilento F, Dal Conte S, Coslovich G, Ferrini G, Molegraaf H, Raichle M, Liang R, Eisaki H, Greven M, Damascelli A, van der Marel D, Parmigiani F (2011) Nature Commun 2:353Google Scholar
  2. 2.
    Ichikawa H, Nozawa S, Sato T, Tomita A, Ichiyanagi K, Chollet M, Guerin L, Dean N, Cavalleri A, Adachi S, Arima T, Sawa H, Ogimoto Y, Nakamura M, Tamaki R, Miyano K, Koshihara S (2010) Nature Mater 10:101ADSCrossRefGoogle Scholar
  3. 3.
    Fausti D, Tobey RI, Dean N, Kaiser S, Dienst A, Hoffmann MC, Pyon S, Takayama T, Takagi H, Cavalleri A (2011) Science 331(6014):189ADSCrossRefGoogle Scholar
  4. 4.
    Rossi F, Kuhn T (2002) Rev Mod Phys 74(3):895ADSCrossRefGoogle Scholar
  5. 5.
    Krausz F, Ivanov M (2009) Rev Mod Phys 81(1):163ADSCrossRefGoogle Scholar
  6. 6.
    Polkovnikov A, Sengupta K, Silva A, Vengalattore M (2011) Rev Mod Phys 83:863ADSCrossRefGoogle Scholar
  7. 7.
    Eckstein M, Kollar M, Werner P (2009) Phys Rev Lett 103:056403ADSCrossRefGoogle Scholar
  8. 8.
    Eckstein M, Werner P (2011) Phys Rev B 84:035122ADSCrossRefGoogle Scholar
  9. 9.
    Schiró M, Fabrizio M (2010) Phys Rev Lett 105:076401ADSCrossRefGoogle Scholar
  10. 10.
    Schiró M, Fabrizio M (2011) Phys Rev B 83:165105ADSCrossRefGoogle Scholar
  11. 11.
    Seibold G, Lorenzana J (2001) Phys Rev Lett 86:2605ADSCrossRefGoogle Scholar
  12. 12.
    de’Medici L, Georges A, Biermann S (2005) Phys Rev B 72(20):205124Google Scholar
  13. 13.
    Hassan SR, de’ Medici L (2010) Phys Rev B 81(3):035106Google Scholar
  14. 14.
    Huber SD, Rüegg A (2009) Phys Rev Lett 102:065301ADSCrossRefGoogle Scholar
  15. 15.
    Rüegg A, Huber SD, Sigrist M (2010) Phys Rev B 81:155118ADSCrossRefGoogle Scholar
  16. 16.
    Georges A, Kotliar G, Krauth W, Rozenberg MJ (1996) Rev Mod Phys 68:13MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    Gutzwiller MC (1964) Phys Rev 134:A923ADSCrossRefGoogle Scholar
  18. 18.
    Gutzwiller MC (1965) Phys Rev 137:A1726MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Fabrizio M (2007) Phys Rev B 76:165110ADSCrossRefGoogle Scholar
  20. 20.
    Bünemann J, Weber W, Gebhard F (1998) Phys Rev B 57:6896ADSCrossRefGoogle Scholar
  21. 21.
    Lanatà N, Barone P, Fabrizio M (2008) Phys Rev B 78:155127ADSCrossRefGoogle Scholar
  22. 22.
    Lechermann F, Georges A, Kotliar G, Parcollet O (2007) Phys Rev B 76:155102ADSCrossRefGoogle Scholar
  23. 23.
    Bünemann J, Gebhard F (2007) Phys Rev B 76:193104ADSCrossRefGoogle Scholar
  24. 24.
    Lanatà N, Strand HUR, Dai X, Hellsing B (2012) Phys Rev B 85:035133ADSCrossRefGoogle Scholar
  25. 25.
    Florens S, Georges A (2004) Phys Rev B 70:035114ADSCrossRefGoogle Scholar
  26. 26.
    Elitzur S (1975) Phys Rev D 12:3978ADSCrossRefGoogle Scholar
  27. 27.
    Maślanka P (1988) Acta Phys Pol B19:269Google Scholar
  28. 28.
    Baruselli PP, Fabrizio M (2012) Phys Rev B 85:073106ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.International School for Advanced StudiesSISSATriesteItaly
  2. 2.The Abdus Salam Center for Theoretical PhysicsICTPTriesteItaly

Personalised recommendations