Skip to main content

Nonlinear Thermoelectric Response of Quantum Dots: Renormalized Dual Fermions Out of Equilibrium

  • Conference paper
  • First Online:
New Materials for Thermoelectric Applications: Theory and Experiment

Abstract

The thermoelectric transport properties of nanostructured devices continue to attract attention from theorists and experimentalist alike as the spatial confinement allows for a controlled approach to transport properties of correlated matter. Most of the existing work, however, focuses on thermoelectric transport in the linear regime despite the fact that the nonlinear conductance of correlated quantum dots has been studied in some detail throughout the last decade. Here, we review our recent work on the effect of particle-hole asymmetry on the nonlinear transport properties in the vicinity of the strong coupling limit of Kondo-correlated quantum dots and extend the underlying method, a renormalized superperturbation theory on the Keldysh contour, to the thermal conductance in the nonlinear regime. We determine the charge, energy, and heat current through the nanostructure and study the nonlinear transport coefficients, the entropy production, and the fate of the Wiedemann-Franz law in the non-thermal steady-state. Our approach is based on a renormalized perturbation theory in terms of dual fermions around the particle-hole symmetric strong-coupling limit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agraït N, Yeyati AL, van Ruitenbeek JM (2003) Quantum properties of atomic-sized conductors. Phys Rep 377:81

    Article  ADS  Google Scholar 

  2. Andrei N, Furuya K, Lowenstein JH (1983) Solution of the Kondo problem. Rev Mod Phys 55:331

    Article  MathSciNet  ADS  Google Scholar 

  3. Baym G, Kadanoff LP(1961) Conservation laws and correlation functions. Phys Rev 124:287

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Bulla R, Costi TA, Pruscke T (2008) Numerical renormalization group method for quantum impurity systems. Rev Mod Phys 80:395–450

    Article  ADS  Google Scholar 

  5. Callen HB, Welton TA (1951) Irreversibility and generalized noise. Phys Rev 83:34

    MathSciNet  MATH  Google Scholar 

  6. Caroli C, Combescot R, Nozieres P, Saint-James D (1971) Direct calculation of the tunneling current. J Phys C 4:916

    Article  ADS  Google Scholar 

  7. Chowdhury I, Prasher R, Lofgreen K, Chrysler G, Narasimhan S, Mahajan R, Koester D, Alley R, Venkatasubramanian R (2009) On-chip cooling by superlattice-based thin-film thermoelectrics. Nat Nanotechnol 4:235

    Article  ADS  Google Scholar 

  8. Costi TA, Zlatić, V (2010) Thermoelectric transport through strongly correlated quantum dots. Phys Rev B 81(235):127

    Google Scholar 

  9. Costi TA, Hewson AC, Zlatić, V (1994) Transport coefficients of the Anderson model via the numerical renormalization group. J Phys C 6:2519

    Google Scholar 

  10. Dong B, Lei XL (2002) Effect of the Kondo correlation on the thermopower in a quantum dot. J Phys Condens Matter 14(11):747

    Google Scholar 

  11. Doyon B, Andrei N (2006) Universal aspects of nonequilibrium currents in a quantum dot. Phys Rev B 73(245):326

    Google Scholar 

  12. Dubi Y, Ventra MD (2011) Colloquium: heat flow and thermoelectricity in atomic and molecular junctions. Rev Mod Phys 83:131

    Article  ADS  Google Scholar 

  13. Goldhaber-Gordon D, Göres J, Kastner MA, Shtrikman H, Mahalu D, Meirav U (1998) From the Kondo regime to the mixed-valence regime in a single-electron transistor. Phys Rev Lett 81:5225

    Article  ADS  Google Scholar 

  14. Grobis M, Rau IG, Potok RM, Shtrikman H, Goldhaber-Gordon D (2008) Universal scaling in nonequilibrium transport through a single channel Kondo dot. Phys Rev Lett 100(246):601

    Google Scholar 

  15. Hafermann H, Jung C, Brenner S, Katnelson MI, Rubtsov AN, Lichtenstein AI (2009) Superperturbation solver for quantum impurity models. EPL 85(27):007

    Google Scholar 

  16. Harman TC, Taylor PJ, Walsh MP, LaForge BE (2002) Quantum dot superlattice thermoelectric materials and devices. Science 297:2229

    Article  ADS  Google Scholar 

  17. Hershfield S, Davies JH, Wilkins J (1992) Resonant tunneling through an Anderson impurity. i. current in the symmetric model. Phys Rev B 46:7046

    Google Scholar 

  18. Hewson AC (1993) Renormalized perturbation expansions and Fermi liquid theory. Phys Rev Lett 70:4007

    Article  ADS  Google Scholar 

  19. Hewson AC, Bauer J, Oguri A (2005) Non-equilibrium differential conductance through a quantum dot in a magnetic field. J Phys Condens Matter 17:5413

    Article  ADS  Google Scholar 

  20. Hewson AC, Oguri A, Bauer J (2010) Renormalized perturbation approach to electron transport through quantum dots. In: Bonca J, Kruchinin S (eds) Physical properties of nanosystems. Springer, Dordrecht, p 10

    Google Scholar 

  21. Horvatić B, Zlatić V (1979) Perturbation calculation of the thermoelectric power in the asymmetric single-orbital Anderson model. Phys Lett A 73:196

    Article  ADS  Google Scholar 

  22. Horvatić B, S̆okc̆ević D, Zlatić V (1987) Finite-temperature spectral density for the Anderson model. Phys Rev B 36:675

    Google Scholar 

  23. Jonson M, Mahan G (1980) Mott’s formula for the thermopower and the Wiedemann-Franz law. Phys Rev B 21:4223

    Article  MathSciNet  ADS  Google Scholar 

  24. Kirchner S, Si Q (2009) Quantum criticality out of equilibrium: steady state in a magnetic single-electron transistor. Phys Rev Lett 103(206):401

    Google Scholar 

  25. Kirchner S, Si Q (2010) On the concept of effective temperature in current-carrying quantum critical states. Phys Stat Solidi B 247:631

    Article  Google Scholar 

  26. Kirchner S, Kroha J, Wölfle P (2004) Dynamical properties of the Anderson impurity model within a diagrammatic pseudoparticle approach. Phys Rev B 70(165):102

    Google Scholar 

  27. Kubo R (1957) Statistical-mechanical theory of irreversible processes. I. general theory and simple applications to magnetic and conduction problems. J Phys Soc Jpn 12:570

    Google Scholar 

  28. Leijnse M, Wegewijs M, Flensberg K (2010) Nonlinear thermoelectric properties of molecular juctions with vibrational coupling. Phys Rev B 82(045):412

    Google Scholar 

  29. Majumdar A (2004) Thermoelectricity in semiconductor nanostructures. Science 303:777

    Google Scholar 

  30. Manasreh O (2005) Semiconductor heterojunctions and nanostructures. McGraw-Hill, New York

    Google Scholar 

  31. Meir Y, Wingreen N (1992) Landauer formula for the current through an interacting electron region. Phys Rev Lett 68:2512–2515

    Article  ADS  Google Scholar 

  32. Muñoz E, Bolech C, Kirchner S (2011) Universal out-of-equilibrium transport in Kondo-correlated quantum dots: a renormalized superperturbation theory on the Keldysh contour. Submitted to Phys Rev Lett arXiv:1111.4076

    Google Scholar 

  33. Natelson D, Yu LH, Ciszek JW, Keane ZK, Tour JM (2006) Single-molecule transistors: electron transfer in the solid state. Chem Phys 324:267

    Article  ADS  Google Scholar 

  34. Nero JD, de Souza FM, Capaz RB (2010) Molecular electronics devices: short review. J Comput Theor Nanosci 7:1

    Article  Google Scholar 

  35. Nguyen TKT, Kiselev MN, Kravtsov VE (2010) Thermoelectric transport through a quantum dot: effects of asymmetry in Kondo channels. Phys Rev B 82(113):306

    Google Scholar 

  36. Oguri A (2001) Fermi-liquid theory for the Anderson model out of equlibrium. Phys Rev B 64(153):305

    Google Scholar 

  37. Oguri A (2005) Out-of-equilibrium Anderson model at high and low bias voltage. J Phys Soc Jpn 74:110

    Article  ADS  MATH  Google Scholar 

  38. Onsager L (1931) Reciprocal relations in irreversible processes I. Phys Rev 37:405

    Article  ADS  Google Scholar 

  39. Pfau H, Hartmann S, Stockert U, Sun P, Lausberg S, Brando M, Friedemann S, Krellner C, Geibel C, Wirth S, Kirchner S, Abrahams E, Si Q, Steglich F (2012) Thermal and electrical transport across a Kondo-breakdown quantum critical point. submitted

    Google Scholar 

  40. Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen X, Liu J, Dresselhaus MS, Chen G, Ren Z (2008) High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320:634

    Article  ADS  Google Scholar 

  41. Reguera D, Platero G, Bonilla LL, Rubi JM (eds) (1999) K. A. Matveev Thermopower in Quantum Dots. In: Proceedings of XVI Sitges conference on statistical mechanics, Sitges, Barcelona, Spain, 7–11 June 1999

    Google Scholar 

  42. Rubtsov AN, Savkin VV, Lichtenstein AI (2005) Continuous time quantum Monte Carlo method for fermions. Phys Rev B 72(035):122

    Google Scholar 

  43. Rubtsov AN, Katsnelson MI, Lichtenstein AI (2008) Dual fermion approach to nonlocal correlations in the Hubbard model. Phys Rev B 77(033):101

    Google Scholar 

  44. Scott GD, Keane ZK, Ciszek JW, Tour JM, Natelson D (2009) Universal scaling of nonequilibrium transport in the Kondo regime of single molecule devices. Phys Rev B 79(165):413

    Google Scholar 

  45. Tanatar MA, Paglione J, Petrovic C, Taillefer L (2007) Anisotropic violation of the Wiedemann-Franz law at a quantum critical point. Science 316:1320

    Article  ADS  Google Scholar 

  46. Venkatasubramanian R, Siivola E, Colpitts T, O´Quinn B (2001) Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413:597

    Google Scholar 

  47. Wakeham N, Bangura AF, Xu X, Mercure JF, Greenblatt M, Hussey NE (2011) Gross violation of the Wiedemann-Franz law in a quasi-one-dimensional conductor. Nat Comm 2:396

    Article  Google Scholar 

  48. Wu LA, Segal D (2009) Energy flux operator, current conservation and the formal Fourier’s law. J Phys A Math Theor 42(025):302

    MathSciNet  Google Scholar 

  49. Yamada K (1975) Perturbation expansion for the Anderson Hamiltonian. iv. Prog Theor Phys 54:316

    Google Scholar 

  50. Yamada K (1976) Thermodynamical quantities in the Anderson Hamiltonian. Prog Theor Phys 55:1345

    Article  ADS  Google Scholar 

  51. Yamada K (1979) Perturbation expansion for the asymmetric Anderson model. Prog Theo Phys 62:354

    Article  ADS  Google Scholar 

  52. Yosida K, Yamada K (1970) Perturbation expansion for the Anderson Hamiltonian. Prog Theor Phys Suppl 46:244

    Article  ADS  Google Scholar 

  53. Zhang Y, Dresselhaus M, Shi Y, Ren Z, Chen G (2011) High thermoelectric figure-of-merit in Kondo insulator nanowires at low temperatures. Nano Lett 11:1166

    Article  ADS  Google Scholar 

  54. Zlatić V, Horvatić B (1983) Series expansion for the symmetric Anderson Hamiltonian. Phys Rev B 28:6904

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank C. Bolech, T. Costi, A.C. Hewson, D. Natelson, J. Paaske, P. Ribeiro, G. Scott and V. Zlatić for many stimulating discussions. E.M. and S.K. acknowledge support by the Comisión Nacional de Investigación Científica y Tecnológica (CONICYT), grant No. 11100064 and the German Academic Exchange Service (DAAD) under grant No. 52636698.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Kirchner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Kirchner, S., Zamani, F., Muñoz, E. (2013). Nonlinear Thermoelectric Response of Quantum Dots: Renormalized Dual Fermions Out of Equilibrium. In: Zlatic, V., Hewson, A. (eds) New Materials for Thermoelectric Applications: Theory and Experiment. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4984-9_10

Download citation

Publish with us

Policies and ethics