“Life Without Water”: The Sleeping Chironomid and Other Anhydrobiotic Invertebrates and Their Utilization in Astrobiology

  • Oleg Gusev
  • Takashi Okuda
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 24)


Anhydrobiosis is a state which allows complex organisms to withstand complete desiccation by effective preservation of biological molecules. Among the metazoans, the anhydrobiotic forms are found only in invertebrates and include representatives of five taxa: insects, crustaceans, rotifers, tardigrades, and nematodes. In dry state, in addition to survival of complete desiccation, these organisms demonstrate high cross-resistance to other abiotic stresses including extreme temperature fluctuations, organic solvents, vacuum, and even ionizing radiation. The anhydrobiotic invertebrates are an attractive model organisms for astrobiology in order to understand limits of resistance of terrestrial life to space environment and evaluation of possibility of interplanetary transfer of life because they have organized tissues, i.e., genetic and biochemical machineries similar to vertebrates. In this chapter, we review the main groups of anhydrobiotic invertebrates, outline aspects of their resistance to excessive abiotic stresses and chronology of utilization this group of organisms in outer space astrobiological experiments.


International Space Station Space Environment Outer Space Space Vacuum Space Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alekseev V (2007) Diapause in crustaceans: peculiarities of induction. In: Alekseev V, Stasio B, Gilbert J (eds) Diapause in aquatic invertebrates theory and human use. Springer, Dordrecht, pp 29–63CrossRefGoogle Scholar
  2. Baglioni P, Sabbatini M, Horneck G (2008) Astrobiology experiments in low earth orbit: facilities, instrumentation, and results. Complete course in astrobiology. Wiley/GmbH & Co, KGaAGoogle Scholar
  3. Baranov VM, Novikova ND, Polikarpov NA, Sychev VN, Levinskikh MA, Alekseev VR, Okuda T, Sugimoto M, Gusev OA, Grigor’ev AI (2009) The biorisk experiment: 13-month exposure of resting forms of organism on the outer side of the Russian segment of the international space station: preliminary results. Dokl Biol Sci 426:267–270CrossRefGoogle Scholar
  4. Brack A, Horneck G, Wynn-Williams D (2001) Exo/astrobiology in Europe. Orig Life Evol B 31:459–480CrossRefGoogle Scholar
  5. Caprioli M, Ricci C (2001) Recipes for successful anhydrobiosis in bdelloid rotifers. Hydrobiologia 446:13–17CrossRefGoogle Scholar
  6. Chen SB, Glazer I (2004) Effect of rapid and gradual increase of osmotic stress on survival of entomopathogenic nematodes. Phytoparasitica 32:486–497CrossRefGoogle Scholar
  7. Clegg JS (2007) Protein stability in artemia embryos during prolonged anoxia. Biol Bull-Us 212:74–81CrossRefGoogle Scholar
  8. Clegg JS, Van Hoa N, Sorgeloos P (2001) Thermal tolerance and heat shock proteins in encysted embryos of artemia from widely different thermal habitats. Hydrobiologia 466:221–229CrossRefGoogle Scholar
  9. Crowe LM (2002) Lessons from nature: the role of sugars in anhydrobiosis. Comp Biochem Phys A 131:505–513CrossRefGoogle Scholar
  10. Crowe LM, Crowe JH (1992) Anhydrobiosis: a strategy for survival. Adv Space Res 12:239–247ADSCrossRefGoogle Scholar
  11. Crowe JH, Madin KA (1974) Anhydrobiosis in tardigrades and nematodes. T Am Microsc Soc 93:513–524CrossRefGoogle Scholar
  12. Crowe JH, Madin KAC (1975) Anhydrobiosis in nematodes - evaporative water-loss and survival. J Exp Zool 193:323–333CrossRefGoogle Scholar
  13. Crowe JH, Madin KAC, Loomis SH (1977) Anhydrobiosis in nematodes - metabolism during resumption of activity. J Exp Zool 201:57–63CrossRefGoogle Scholar
  14. Crowe JH, Oliver AE, Tablin F (2002) Is there a single biochemical adaptation to anhydrobiosis? Integr Comp Biol 42:497–503CrossRefGoogle Scholar
  15. Darby BJ, Neher DA (2006) Estimating genus-specific anhydrobiosis of desert nematodes from field soils. J Nematol 38:269Google Scholar
  16. de Vera JP, Ott S, de la Torre R, Sancho LG, Horneck G, Rettberg P, Ascaso C, de los Rios A, Wierzchos J, Cockell C, Olsson K, Frias JM, Demets R (2009) Esa experiment biopan-6-germination and growth capacity of lichen symbiont cells and ascospores after space exposure. Orig Life Evol B 39:359–360Google Scholar
  17. Denekamp N, Suga K, Hagiwara A, Reinhardt R, Lubzens E (2010) A role for molecular studies in unveiling the pathways for formation of rotifer resting eggs and their survival during dormancy. In: Lubzens E, Cerda J, Clark M (eds) Dormancy and resistance in harsh environments. Springer, Berlin/Heidelberg, pp 109–132CrossRefGoogle Scholar
  18. Franca MB, Panek AD, Eleutherio EC (2007) Oxidative stress and its effects during dehydration. Comp Biochem Physiol A Mol Integr Physiol 146:621–631CrossRefGoogle Scholar
  19. Gaubin Y, Pianezzi B, Gasset G, Plannel H, Kovalev EE (1986) Stimulating effect of space flight factors on artemia cysts: comparison with irradiation by gamma rays. Aviat Space Environ Med 57:583–590Google Scholar
  20. Gaubin Y, Prévost MC, Cariven C, Pianezzi B, Planel H, Soleilhavoup JP (1996) Enzyme activities and membrane lipids in artemia cysts after a long duration space flight. Adv Space Res 18:221–227ADSCrossRefGoogle Scholar
  21. Gladyshev E, Meselson M (2008) Extreme resistance of bdelloid rotifers to ionizing radiation. Proc Natl Acad Sci U S A 105:5139–5144ADSCrossRefGoogle Scholar
  22. Gladyshev EA, Meselson M, Arkhipova IR (2008) Massive horizontal gene transfer in bdelloid rotifers. Science 320:1210–1213ADSCrossRefGoogle Scholar
  23. Glasheen JS, Hand SC (1988) Anhydrobiosis in embryos of the brine shrimp artemia - characterization of metabolic arrest during reductions in cell-associated water. J Exp Biol 135:363–380Google Scholar
  24. Goyal K, Pinelli C, Maslen SL, Rastogi RK, Stephens E, Tunnacliffe A (2005a) Dehydration-regulated processing of late embryogenesis abundant protein in a desiccation-tolerant nematode. FEBS Lett 579:4093–4098CrossRefGoogle Scholar
  25. Goyal K, Walton LJ, Browne JA, Burnell AM, Tunnacliffe A (2005b) Molecular anhydrobiology: identifying molecules implicated in invertebrate anhydrobiosis. Integr Comp Biol 45:702–709CrossRefGoogle Scholar
  26. Grewal PS, Bornstein-Forst S, Burnell AM, Glazer I, Jagdale GB (2006) Physiological, genetic, and molecular mechanisms of chemoreception, thermobiosis, and anhydrobiosis in entomopathogenic nematodes. Biol Control 38:54–65CrossRefGoogle Scholar
  27. Gusev O, Cornette R, Kikawada T, Okuda T (2010) Expression of heat shock protein-coding genes associated with anhydrobiosis in an African chironomid polypedilum vanderplanki. Cell Stress Chaperones 16(1):81–90CrossRefGoogle Scholar
  28. Hengherr S, Brummer F, Schill RO (2008) Anhydrobiosis in tardigrades and its effects on longevity traits. J Zool 275:216–220CrossRefGoogle Scholar
  29. Hengherr S, Worland MR, Reuner A, Brummer F, Schill RO (2009) High-temperature tolerance in anhydrobiotic tardigrades is limited by glass transition. Physiol Biochem Zool 82:749–755CrossRefGoogle Scholar
  30. Horikawa DD, Sakashita T, Katagiri C, Watanabe M, Kikawada T, Nakahara Y, Hamada N, Wada S, Funayama T, Higashi S, Kobayashi Y, Okuda T, Kuwabara M (2006) Radiation tolerance in the tardigrade milnesium tardigradum. Int J Radiat Biol 82:843–848CrossRefGoogle Scholar
  31. Horikawa DD, Kunieda T, Abe W, Watanabe M, Nakahara Y, Yukuhiro F, Sakashita T, Hamada N, Wada S, Funayama T, Katagiri C, Kobayashi Y, Higashi S, Okuda T (2008) Establishment of a rearing system of the extremotolerant tardigrade ramazzottius varieornatus: a new model animal for astrobiology. Astrobiology 8:549–556ADSCrossRefGoogle Scholar
  32. Horneck G (1982) Response of microorganisms to free space environment. Biol Cell 45:471Google Scholar
  33. Horneck G (2002) Meteorites as potential source of microorganisms on early earth and mars. Geochim Cosmochim Ac 66:341Google Scholar
  34. Horneck G (2003) Anhydrobiosis, a capacity for long-term survival of hostile environmental conditions. Geochim Cosmochim Ac 67:157ADSGoogle Scholar
  35. Horneck G, Brack A (1992) Study of the origin, evolution and distribution of life with emphasis on exobiology experiments in earth orbit. Adv Space Biol Med 2:229–262CrossRefGoogle Scholar
  36. Horneck G, Bucker H (1986) Can microorganisms withstand the multistep trial of interplanetary transfer - considerations and experimental approaches. Orig Life Evol Biosphere 16:414–415CrossRefGoogle Scholar
  37. Horneck G, Bucker H, Reitz G, Requardt H, Dose K, Martens KD, Mennigmann HD, Weber P (1984) Microorganisms in the space environment. Science 225:226–228ADSCrossRefGoogle Scholar
  38. Iwasaki T (1964) Sensitivity of artemia eggs to the gamma-irradiation. I. Hatchability of encysted dry eggs. J Radiat Res (Tokyo) 29:69–75CrossRefGoogle Scholar
  39. Jonsson KI (2005) The evolution of life histories in holo-anhydrobiotic animals: a first approach. Integr Comp Biol 45:764–770CrossRefGoogle Scholar
  40. Jonsson KI, Harms-Ringdahl M, Torudd J (2005) Radiation tolerance in the eutardigrade richtersius coronifer. Int J Radiat Biol 81:649–656CrossRefGoogle Scholar
  41. Jonsson KI, Rabbow E, Schill RO, Harms-Ringdahl M, Rettberg P (2008) Tardigrades survive exposure to space in low earth orbit. Curr Biol 18:R729–R731CrossRefGoogle Scholar
  42. Keilin D (1959) The Leeuwenhoek lecture - the problem of anabiosis or latent life - history and current concept. P Roy Soc Lond B Bio 150:149–191ADSCrossRefGoogle Scholar
  43. Kikawada T, Nakahara Y, Kanamori Y, Iwata K, Watanabe M, McGee B, Tunnacliffe A, Okuda T (2006) Dehydration-induced expression of lea proteins in an anhydrobiotic chironomid. Biochem Biophys Res Commun 348:56–61CrossRefGoogle Scholar
  44. Marotta R, Leasi F, Uggetti A, Ricci C, Melone G (2010) Dry and survive: morphological changes during anhydrobiosis in a bdelloid rotifer. J Struct Biol 171:11–17CrossRefGoogle Scholar
  45. May RM, Maria M, Guimard J (1964) Action diffréntielle des rayons x et ultraviolets sur le tardigrade macrobiotus areolatus, a l’ état actif et desséché. Bulletin Biologique de la France et de la Belgique 98:349–367Google Scholar
  46. McLennan AG (2009a) Ametabolic embryos of artemia franciscana accumulate DNA damage during prolonged anoxia. J Exp Biol 212:785–789CrossRefGoogle Scholar
  47. McLennan AG (2009b) Ametabolic embryos of artemia franciscana accumulate DNA damage during prolonged anoxia. J Exp Biol 212:785–789CrossRefGoogle Scholar
  48. Meyer C, Stoffler D, Misgaiski M, Fritz J, Moeller R, Rabbow E, Horneck G, De Vera JP, Cockell C, Hornemann U (2008) Shock experiments in support of the lithopanspermia theory: the influence of host rock composition, temperature and shock pressure on the survival rate of endolithic and epilithic microorganisms. Int J Astrobiol 7, 1:70Google Scholar
  49. Neumann S, Reuner A, Brummer F, Schill RO (2009) DNA damage in storage cells of anhydrobiotic tardigrades. Comp Biochem Physiol A Mol Integr Physiol 153:425–429CrossRefGoogle Scholar
  50. Nicholas WL, Stewart AC (1989) Experiments on anhydrobiosis in acrobeloides-nanus (Deman, 1880) Anderson, 1986 (nematoda). Nematologica 35:489–491CrossRefGoogle Scholar
  51. Novikova N, Gusev O, Polikarpov N, Deshevaya E, Levinskikh M, Alekseev V, Okuda T, Sugimoto M, Sychev V, Grigoriev A (2011) Survival of dormant organisms after long-term exposure to the space environment. Acta Astronautica, 68, 9–10, 1574–1580.
  52. Planel H, Gaubin Y, Pianezzi B, Gasset G (1989) Space environmental factors affecting responses to radiation at the cellular level. Adv Space Res 9:157–160ADSCrossRefGoogle Scholar
  53. Planel H, Gaubin Y, Pianezzi B, Delpoux M, Bayonove J, Bes JC, Heilmann C, Gasset G (1994) Influence of a long duration exposure, 69 months, to the space flight factors in artemia cysts, tobacco and rice seeds. Adv Space Res 14:21–32ADSCrossRefGoogle Scholar
  54. Pouchkina-Stantcheva N, Tunnacliffe A (2004) Molecular studies of anhydrobiosis in bdelloid rotifers. Integr Comp Biol 44:624Google Scholar
  55. Qiu Z, MacRae T (2010) A molecular overview of diapause in embryos of the crustacean, artemia franciscana. In: Lubzens E, Cerda J, Clark M (eds) Dormancy and resistance in harsh environments. Springer, Berlin/Heidelberg, pp 165–187CrossRefGoogle Scholar
  56. Rebecchi L, Altiero T, Guidetti R (2007) Anhydrobiosis: the extreme limit of desiccation tolerance. ISJ 4:65–81Google Scholar
  57. Rebecchi L, Cesari M, Altiero T, Frigieri A, Guidetti R (2009) Survival and DNA degradation in anhydrobiotic tardigrades. J Exp Biol 212:4033–4039CrossRefGoogle Scholar
  58. Ricci C, Caprioli M (2005) Anhydrobiosis in bdelloid species, populations and individuals. Integr Comp Biol 45:759–763CrossRefGoogle Scholar
  59. Riley IT, Shedley D, Sivasithamparam K (2001) Anhydrobiosis and reproduction in anguina australis. Australas Plant Path 30:361–364CrossRefGoogle Scholar
  60. Saeed M, Roessner J (1984) Anhydrobiosis in 5 species of plant associated nematodes. J Nematol 16:119–124Google Scholar
  61. Schill R (2010) Anhydrobiotic abilities of tardigrades. In: Lubzens E, Cerda J, Clark M (eds) Dormancy and resistance in harsh environments. Springer, Berlin/Heidelberg, pp 133–146CrossRefGoogle Scholar
  62. Shinokawa T (1997) Effect of dry and wet soil conditions on hatching rate in Asian tadpole shrimp, triops granarius. Jpn J Appl Entomol Z 41:237–239CrossRefGoogle Scholar
  63. Shishov VA (2008) Determination of spacecraft and phobos parameters of motion in the phobos-grunt project. Solar Syst Res 42:319–328ADSCrossRefGoogle Scholar
  64. Somme L (1996) Anhydrobiosis and cold tolerance in tardigrades. Eur J Entomol 93:349–357Google Scholar
  65. Stoffler D, Horneck G, Ott S, Hornemann U, Cockell CS, Moeller R, Meyer C, de Vera JP, Fritz J, Artemieva NA (2007) Experimental evidence for the potential impact ejection of viable microorganisms from mars and mars-like planets. Icarus 186:585–588ADSCrossRefGoogle Scholar
  66. Thompson JP (1990) Treatments to eliminate root-lesion nematode (pratylenchus-thornei sher and allen) from a vertisol. Nematologica 36:123–127CrossRefGoogle Scholar
  67. Tunnacliffe A, Lapinski J (2003) Resurrecting van leeuwenhoek’s rotifers: a reappraisal of the role of disaccharides in anhydrobiosis. Philos T Roy Soc B 358:1755–1771CrossRefGoogle Scholar
  68. Tunnacliffe A, Hincha D, Leprince O, Macherel D (2010) Lea proteins: versatility of form and function. In: Lubzens E, Cerda J, Clark M (eds) Dormancy and resistance in harsh environments. Springer, Berlin/Heidelberg, pp 91–108CrossRefGoogle Scholar
  69. Vanvlasselaer E, De Meester L (2010) An exploratory review on the molecular mechanisms of diapause termination in the waterflea, daphnia. In: Lubzens E, Cerda J, Clark M (eds) Dormancy and resistance in harsh environments. Springer, Berlin/Heidelberg, pp 189–202CrossRefGoogle Scholar
  70. Watanabe M (2006) Anhydrobiosis in invertebrates. Appl Entomol Zool 41:15–31CrossRefGoogle Scholar
  71. Watanabe M, Kikawada T, Minagawa N, Yukuhiro F, Okuda T (2002) Mechanism allowing an insect to survive complete dehydration and extreme temperatures. J Exp Biol 205:2799–2802Google Scholar
  72. Watanabe M, Kikawada T, Okuda T (2003) Increase of internal ion concentration triggers trehalose synthesis associated with cryptobiosis in larvae of polypedilum vanderplanki. J Exp Biol 206:2281–2286CrossRefGoogle Scholar
  73. Watanabe M, Kikawada T, Fujita A, Okuda T (2005) Induction of anhydrobiosis in fat body tissue from an insect. J Ins Physiol 51:727–731CrossRefGoogle Scholar
  74. Watanabe M, Sakashita T, Fujita A, Kikawada T, Horikawa DD, Nakahara Y, Wada S, Funayama T, Hamada N, Kobayashi Y, Okuda T (2006a) Biological effects of anhydrobiosis in an African chironomid, polypedilum vanderplanki on radiation tolerance. Int J Radiat Biol 82:587–592CrossRefGoogle Scholar
  75. Watanabe M, Sakashita T, Fujita A, Kikawada T, Horikawa DD, Nakahara Y, Wada S, Funayama T, Hamada N, Kobayashi Y, Okuda T (2006b) Biological effects of anhydrobiosis in an African chironomid, polypedilum vanderplanki on radiation tolerance. Int J Radiat Biol 82:587–592CrossRefGoogle Scholar
  76. Watanabe M, Sakashita T, Fujita A, Kikawada T, Nakahara Y, Hamada N, Horikawa DD, Wada S, Funayama T, Kobayashi Y, Okuda T (2006c) Estimation of radiation tolerance to high let heavy ions in an anhydrobiotic insect, polypedilum vanderplanki. Int J Radiat Biol 82:835–842CrossRefGoogle Scholar
  77. Watanabe M, Nakahara Y, Sakashita T, Kikawada T, Fujita A, Hamada N, Horikawa DD, Wada S, Kobayashi Y, Okuda T (2007) Physiological changes leading to anhydrobiosis improve radiation tolerance in polypedilum vanderplanki larvae. J Insect Physiol 53:573–579CrossRefGoogle Scholar
  78. Wharton DA, Barclay S (1993) Anhydrobiosis in the free-living antarctic nematode panagrolaimus-davidi (nematoda, rhabditida). Fund Appl Nematol 16:17–22Google Scholar
  79. Wharton DA, Goodall G, Marshall CJ (2002) Freezing rate affects the survival of a short-term freezing stress in panagrolaimus davidi, an antarctic nematode that survives intracellular freezing. CryoLetters 23:5–10Google Scholar
  80. Wolkers WF, Tablin F, Crowe JH (2002) From anhydrobiosis to freeze-drying of eukaryotic cells. Comp Biochem Physiol Mol Integr Physiol 131:535–543CrossRefGoogle Scholar
  81. Womersley C (1988) Morphological and biochemical adaptations to anhydrobiosis in artificially and naturally dehydrated populations of ditylenchus myceliophagus (nematoda). Am Zool 28:76Google Scholar
  82. Wright JC (2001) Cryptobiosis 300 years on from van leuwenhoek: What have we learned about tardigrades? Zool Anz 240:563–582CrossRefGoogle Scholar
  83. Yoshinaga K, Yoshioka H, Kurosaki H, Hirasawa M, Uritani M, Hasegawa K (1997) Protection by trehalose of DNA from radiation damage. Biosci Biotechnol Biochem 61:160–161CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Anhydrobiosis Research UnitNational Institute of Agrobiological SciencesTsukubaJapan

Personalised recommendations