Advertisement

Halophiles, Continental Evaporites and the Search for Biosignatures in Environmental Analogues for Mars

  • Roberto Barbieri
  • Nunzia Stivaletta
Chapter
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 24)

Abstract

In the current decade, two Martian missions are planned by NASA and ESA having as primary target the search for possible signs of past or present life: Mars Science Laboratory (MSL), which is part of NASA’s Mars Exploration Program, and the ExoMars of ESA’s Aurora Programme. The reasons that make Mars of special interest from an astrobiological perspective include its nearness, some of the present-day physical characteristics of the planet’s surface, and its geological history. Mars seems to have experienced earthlike conditions in its geological past, with lots of liquid water (Squyres and Kasting, 1994; Hynek and Phillips, 2003; Baker, 2006) that was able to produce the depositional processes and the erosional features described in different regions. Recently formed water features have also been described (e.g., gullies on cliffs and crater walls, Malin and Edgett, 2000), and they suggest that near surface, liquid water may episodically be present currently. Other conditions suitable for life (for example: a warmer climate) likely characterized the planet during the earlier phases of its geological history. Periods with a possible robust greenhouse warming may have taken place in the early Mars, during the Late Noachian-Hesperian period, through the combined effect in the atmosphere of gases, such as CO2, NH3, and CH4, which might have maintained a surface temperature above the freezing point of water (Beaty et al., 2005). The finding – by rovers and, remotely, by orbiters and spectrometers – of salt- (especially hydrated sulfate) rich deposits in different areas of the Martian surface (Squyres et al., 2004; Vaniman et al., 2004; Gendrin et al., 2005; Langevin et al., 2005) is a further indication of past aqueous processes.

Keywords

Qaidam Basin Martian Surface Salt Crust Mars Science Laboratory Salt Environment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

5. Acknowledgments

This work was financially supported by the MIUR-PRIN (2006) program “Geomicrobiology of continental evaporite deposits: comparative analysis of fossil and modern settings and relevance to astrobiology” and Progetto Strategico Atacama of the University of Bologna.

6. References

  1. Alsharhan AS, Kendall GCStC (2003) Holocene coastal carbonates and evaporites of the southern Arabian Gulf and their ancient analogues. Earth Sci Rev 61:191–243ADSCrossRefGoogle Scholar
  2. Aubrey A, Cleaves HJ, Chalmers JH, Skelley AM, Mathies RA, Grunthaner FJ, Ehrenfreund P, Bada JL (2006) Sulfate minerals and organic compounds on Mars. Geology 34:357–360ADSCrossRefGoogle Scholar
  3. Baker VR (2006) Geomorphological evidence for water on Mars. Elements 2:139–143CrossRefGoogle Scholar
  4. Barbieri R, Stivaletta N, Marinangeli L, Ori GG (2006) Microbial signatures in sabkha evaporite deposits of Chott el Gharsa (Tunisia) and their astrobiological implications. Planet Space Sci 54:726–736ADSCrossRefGoogle Scholar
  5. Barbieri R, Cavalazzi B, Stivaletta N, Capaccioni B (2009) Life at the extreme: physical environments and microorganisms in the Atacama region (Chile). In: Rossi PL (ed) Geological constraints on the onset and evolution of an extreme environment: the Atacama area. GeoActa Special Publication, 2, pp 141–153Google Scholar
  6. Barbieri R, Stivaletta N (2011) Continental evaporites and the search for evidence of life on Mars. Geol J 46:513–524Google Scholar
  7. Battista JR (1997) AGAINST ALL ODDS: the survival strategies of Deinococcus radiodurans. Annu Rev Microbiol 51:203–224CrossRefGoogle Scholar
  8. Beaty DW, Clifford SM, Borg LE, Catling DC, Craddock RA, Des Marais DJ, Farmer JD, Frey HV, Haberle RM, McKay CP, Newsom HE, Parker TJ, Segura T, Tanaka KL (2005) Key science questions from the second conference on early Mars: geologic, hydrologic, and climatic evolution and the implications for life. Astrobiology 5:663–689ADSCrossRefGoogle Scholar
  9. Billi D, Potts M (2002) Life and death in dried prokaryotes. Res Microbiol 153:7–12ADSCrossRefGoogle Scholar
  10. Blackmond DG (2010) The origin of biological homochirality. Cold Spring Harb Perspect Biol 2. doi: 10.1101/cshperspect.a002147
  11. Bryant RG, Drake NA, Millington AC, Sellwood BW (1994) The chemical evolution of the brines of Chott el Djerid, southern Tunisia, after an exceptional rainfall event in January 1990. In: Renaut RW, Last WM (eds) Sedimentology and geochemistry of modern and ancient saline lakes. SEPM (Society for Sedimentary Geology) Special Publication, 50, pp 3–12Google Scholar
  12. Buczynski C, Chafetz HS (1991) Habit of bacterially induced precipitates of calcium carbonate and the influence of medium viscosity on mineralogy. J Sediment Petrol 61:226–233Google Scholar
  13. Carter J, Poulet F, Bibring J-P, Murchie S (2010) Detection of hydrated silicates in crustal outcrops in the Northern Plains of Mars. Science 328:1682–1686ADSCrossRefGoogle Scholar
  14. Crowley JK, Hook SJ (1996) Mapping playa evaporite minerals and associated sediments in Death Valley, California, with multispectral thermal infrared images. J Gephys Res 101:643–660ADSCrossRefGoogle Scholar
  15. Davila A, Gomez-Silva B, De Los Rios A, Ascaso C, Olivares H, McKay CP, Wierzchos J (2008) Facilitation of endolithic microbial survival in the hyperarid core of the Atacama Desert by mineral deliquescence. J Geophys Res 113:G01028CrossRefGoogle Scholar
  16. Demergasso C, Chong G, Galleguillos P, Escudero L, Martínez-Alonso M, Esteve I (2003) Microbial mats from the Llamará salt flat, northern Chile. Rev Chil Hist Nat 76:485–499CrossRefGoogle Scholar
  17. Dombrowski H (1963) Bacteria from Paleozoic salt deposits. Ann N Y Acad Sci 108:453–460ADSCrossRefGoogle Scholar
  18. Douglas S, Yang H (2002) Mineral biosignatures in evaporites: presence of rosickyite in an endoevaporitic microbial community from Death Valley, California. Geology 30:1075–1078ADSCrossRefGoogle Scholar
  19. Douglas S, Abbey W, Mielke R, Conrad P, Kanik I (2008) Textural and mineralogical biosignatures in an unusual microbialite from Death Valley, California. Icarus 193:620–636ADSCrossRefGoogle Scholar
  20. Drake NA, Bryant NG, Millington AC, Townshend JRG (1994) Playa sedimentology and geomorphology mixture modelling applied to Landsat thematic mapper data of Chott el Djerid, Tunisia. In: Renaut RW, Last WM (eds) Sedimentology and geochemistry of modern and ancient saline lakes. SEPM (Society for Sedimentary Geology) Special Publication, 50, pp 125–134Google Scholar
  21. Elwood Madden ME, Bodnar RJ, Rimstidt JD (2004) Jarosite as geochemical indicator of water-limited chemical weathering on Mars. Nature 431:821–823ADSCrossRefGoogle Scholar
  22. Fernandez-Remolar DC, Morris R, Gruener JE, Amils R, Knoll AH (2005) The Rio Tinto Basin, Spain: mineralogy, sedimentary geobiology, and implications for interpretation of outcrop rocks at Meridiani Planum, Mars. Earth Planet Sci Lett 240:149–167ADSCrossRefGoogle Scholar
  23. Garcia-Veigas J, Chong G, Pueyo JJ (1996) Mineralogy and geochemistry of the Salar Grande salt rock (I Región de Tarapacá, Chile). Genetic implications. ISAG 96: symposium international sur la Géodinamique Andine, 3, Saint-Malo, ORSTOM, 1996, pp 679–682Google Scholar
  24. Gendrin A, Mangold N, Bibring J-P, Langevin Y, Gondet B, Poulet F, Bonello G, Quantin C, Mustard J, Arvidson R, LeMouélic S (2005) Sulfates in Martian layered terrains: the OMEGA/Mars express view. Science 307:1587–1591ADSCrossRefGoogle Scholar
  25. Grant WD (2004) Life at low water activity. Philos Trans R Soc Lond Biol 359:1249–1267CrossRefGoogle Scholar
  26. Grishin SI, Bigham JM, Tuovinen OH (1988) Characterization of jarosite formed upon bacterial oxidation of ferrous sulfate in a packed-bed reactor. Appl Environ Microbiol 54:3101–3106Google Scholar
  27. Hynek BM, Phillips RJ (2003) New data reveal mature, integrated drainage systems on Mars indicative of past precipitation. Geology 31:757–760ADSCrossRefGoogle Scholar
  28. Kendall AC (1992) Evaporites. In: Walker RG, James NP (eds) Facies models: response to sea level change. Geological Association of Canada, St John, pp 375–409Google Scholar
  29. Klingelhoefer G, Morris RV, Bernhardt B, Schroeder C, Rodionov DS, de Souza PA Jr, Yen A, Gellert R, Evlanov EN, Zubkov B, Foh J, Bonnes U, Kankeleit E, Gutlich P, Ming DW, Renz F, Wdowiak T, Squyres SW, Arvidson RE (2004) Jarosite and hematite at Meridiani Planum from Opportunity’s Mössbauer spectrometer. Science 306:1740–1745ADSCrossRefGoogle Scholar
  30. Konhauser K (2007) Introduction to geomicrobiology. Blackwell Science, Oxford, 425 pGoogle Scholar
  31. Kounaves SP, Hecht MH, Kapit J, Quinn RC, Catling DC, Clark BC, Ming DW, Gospodinova K, Hredzak P, McElhoney K, Shusterman J (2010) Soluble sulfate in the Martian soil at the Phoenix landing site. J Geophys Res 37:L09201Google Scholar
  32. Krumbein WE, Gorbushina AA, Holtkamp-Tacken E (2004) Hypersaline microbial systems of Sabkhas: examples of life’s survival in “extreme” conditions. Astrobiology 4:450–459ADSCrossRefGoogle Scholar
  33. Langevin Y, Poulet F, Bibring J-P, Gondet B (2005) Sulfates in the North Polar region of Mars detected by OMEGA/Mars express. Science 307:1584–1586ADSCrossRefGoogle Scholar
  34. Madigan MT, Martinko JM, Dunlap PV, Clark DP, Brock T (2009) Brock biology of microorganisms, 12th edn. Pearson Benjamin Cummings, San Francisco, 596 pGoogle Scholar
  35. Malin MC, Edgett KS (2000) Evidence for recent groundwater seepage and surface runoff on Mars. Science 288:2330–2335ADSCrossRefGoogle Scholar
  36. Martinez-Frias J, Amaral G, Vázquez L (2006) Astrobiological significance of minerals on Mars surface environment. Rev Environ Sci Biotechnol 5:219–231CrossRefGoogle Scholar
  37. Maturrano L, Santos F, Rossello-Mora R, Anton J (2006) Microbial diversity in Maras salterns, a hypersaline environment in the Peruvian Andes. Appl Environ Microbiol 72:3887–3895CrossRefGoogle Scholar
  38. McKay CP (2010) An origin of life on Mars. Cold Spring Harb Perspect Biol 2:a003509MathSciNetCrossRefGoogle Scholar
  39. Murchie SL, Mustard JF, Ehlmann BL, Ralph E, Milliken RE, Bishop JL, McKeown NK, Noe Dobrea EZ, Seelos FP, Buczkowski DL, Wiseman SM, Arvidson RE, Wray JJ, Swayze G, Clark RN, Des Marais DJ, McEwen AS, Bibring J-P (2009) A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars reconnaissance orbiter. J Geophys Res 114:E00D06. doi: 10.1029/2009JE003342 CrossRefGoogle Scholar
  40. Norton CF, Grant WD (1988) Survival of halobacteria within fluid inclusions in salt crystals. J Gen Microbiol 134:1365–1373Google Scholar
  41. Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst 4. doi: 10.1186/1746-1448-4-2
  42. Oren A, Kuhl M, Karsten U (1995) An endoevaporitic microbial mat within a gypsum crust: zonation of phototrophs, photopigments and light penetration. Mar Ecol Progr Ser 128:151–159CrossRefGoogle Scholar
  43. Panieri G, Lugli S, Manzi V, Roveri M, Schreiber BC, Palinska KA (2010) Ribosomal RNA gene fragments from fossilized cyanobacteria identified in primary gypsum from the late Miocene, Italy. Geobiology 8:100–111CrossRefGoogle Scholar
  44. Park JS, Vreeland RH, Cho BC, Lowenstein TK, Timofeeff MN, Rosenzweig WD (2009) Haloarchaeal diversity in 23, 121 and 419 MYA salts. Geobiology 7:515–523CrossRefGoogle Scholar
  45. Pueyo JJ, Chong G, Jensen A (2001) Neogene evaporites in desert volcanic environments: Atacama Desert, northern Chile. Sedimentology 48:1411–1431ADSCrossRefGoogle Scholar
  46. Rothschild LJ (1990) Earth analogs for Martian life. Microbes in evaporites, a new model system for life on Mars. Icarus 88:246–260ADSCrossRefGoogle Scholar
  47. Rothschild LJ, Giver LJ, White MR, Mancinelli RL (1994) Metabolic activity of microorganisms in evaporites. J Phycol 30:431–438CrossRefGoogle Scholar
  48. Satterfield CL, Lowenstein TK, Vreeland RH, Rosenzweig WD, Powers DW (2005) New evidence for 250 Ma age of halotolerant bacterium from a Permian salt crystal. Geology 33:265–268ADSCrossRefGoogle Scholar
  49. Schubert BA, Lowenstein TK, Timofeeff MN (2009) Microscopic identification of prokaryotes in modern and ancient halite, Saline Valley and Death Valley, California. Astrobiology 9:467–482ADSCrossRefGoogle Scholar
  50. Soppa J (2006) From genomes to function: haloarchaea as model organisms. Microbiology 152:585–590CrossRefGoogle Scholar
  51. Squyres SW, Kasting JF (1994) Early Mars: how warm and how wet? Science 265:744–749ADSCrossRefGoogle Scholar
  52. Squyres SW, Knoll AH (2005) Sedimentary rocks at Meridiani Planum: origin, diagenesis, and implications for life on Mars. Earth Planet Sci Lett 240:1–10ADSCrossRefGoogle Scholar
  53. Squyres SW, Arvidson RE, Bell JF III, Brückner J, Cabrol NA, Calvin W, Carr MH, Christensen PR, Clark BC, Crumpler L, Des Marais DJ, d’Uston C, Economou T, Farmer J, Farrand W, Folkner W, Golombek M, Gorevan S, Grant JA, Greeley R, Grotzinger J, Haskin L, Herkenhoff KE, Hviid S, Johnson J, Klingelhöfer G, Knoll AH, Landis G, Lemmon M, Li R, Madsen MB, Malin MC, McLennan SM, McSween HY, Ming DW, Moersch J, Morris RV, Parker T, Rice JW Jr, Richter L, Rieder R, Sims M, Smith M, Smith P, Soderblom LA, Sullivan R, Wänke H, Wdowiak T, Wolff M, Yen A (2004) The Opportunity Rover’s Athena science investigation at Meridiani Planum, Mars. Science 306:1698–1701ADSCrossRefGoogle Scholar
  54. Stivaletta N, Barbieri R (2008) Endoliths in terrestrial arid environments: implications for astrobiology. In: Seckbach J, Walsh M (eds) From fossils to astrobiology. Springer, Dordrecht, pp 319–333CrossRefGoogle Scholar
  55. Stivaletta N, Barbieri R (2009) Endolithic microorganisms from spring mound evaporite deposits (southern Tunisia). J Arid Environ 73:33–39CrossRefGoogle Scholar
  56. Stivaletta N, Barbieri R, Picard C, Bosco M (2009) Astrobiological significance of the sabkha life and environments of southern Tunisia. Planet Space Sci 57:597–605ADSCrossRefGoogle Scholar
  57. Stivaletta N, López-García P, Boihem L, Millie DF, Barbieri R (2010) Biomarkers of endolithic communities within gypsum crusts (southern Tunisia). Geomicrobiol J 27:101–110CrossRefGoogle Scholar
  58. Stivaletta N, Barbieri R, López-García P, Cevenini F (2011) Physicochemical conditions and microbial diversity associated with the evaporite deposits in the Laguna de la Piedra (Salar de Atacama, Chile). Geomicrobiol J 28:83–95CrossRefGoogle Scholar
  59. Stoertz GE, Ericksen GE (1974) Geology of salars in Northern Chile. US Geological Survey Professional Paper, 811, p 65Google Scholar
  60. Taher AG (1999) Inland saline lakes of Wadi El Natrun depression. Egypt Int J Salt Lake Res 8:149–169Google Scholar
  61. van Lith Y, Warthmann R, Vasconcelos C, McKenzie JA (2003) Sulfate-reducing bacteria induce low-temperature Ca-dolomite and high Mg-calcite formation. Geobiology 1:71–79CrossRefGoogle Scholar
  62. Vaniman DT, Bish DL, Chimera SJ, Fialips CI, Carey JW, Feldman WC (2004) Magnesium sulfate salts and the history of water on Mars. Nature 431:663–665ADSCrossRefGoogle Scholar
  63. Vitek P, Osterrothová K, Jehlička J (2009) Beta-carotene – a possible biomarker in the Martian evaporitic environment: Raman micro spectroscopic study. Planet Space Sci 57:454–459ADSCrossRefGoogle Scholar
  64. Vreeland RH, Rosenzweig WD, Lowenstein T, Satterfield C, Ventosa A (2006) Fatty acid and DNA analyses of Permian bacteria isolated from ancient salt crystals reveal differences with their modern relatives. Extremophiles 110:71–78CrossRefGoogle Scholar
  65. Wang A, Zheng MP (2009) Evaporative salts from saline lakes on Tibet Plateau: an analog for salts on Mars. 40th lunar and planetary science conference, #1858Google Scholar
  66. Warren JK (2006) Evaporites. Sediments, resources and hydrocarbons. Springer, Berlin/Heidelberg, 1036 pCrossRefGoogle Scholar
  67. Warthmann R, van Lith Y, Vasconcelos C, McKenzie JA (2000) Bacterially induced dolomite precipitation in anoxic culture experiments. Geology 28:1091–1194ADSCrossRefGoogle Scholar
  68. Wierzchos J, Ascaso C, McKay CP (2006) Endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama Desert. Astrobiology 6:415–422ADSCrossRefGoogle Scholar
  69. Wright DT, Wacey D (2005) Precipitation of dolomite using sulfate reducing bacteria from the Coorong Region, South Australia: significance and implications. Sedimentology 52:987–1008ADSCrossRefGoogle Scholar
  70. Zheng MP, Wang A, Kong FJ, Ma NN (2009) Saline lakes on Qinghai-Tibet Plateau and salts on Mars. 40th lunar planetary science conference, # 1454Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Dipartimento di Scienze della Terra e Geologico-ambientaliUniversity of BolognaBolognaItaly

Personalised recommendations