Advertisement

Life in Earth’s Lava Caves: Implications for Life Detection on Other Planets

  • Diana E. Northup
  • Jennifer J. M. Hathaway
  • Jessica R. Snider
  • Monica Moya Balasch
  • Matthew G. Garcia
  • Maria L. N. Enes Dapkevicius
  • Cristina Riquelme Gabriel
  • Fred D. Stone
  • Michael N. Spilde
  • Penelope J. Boston
Chapter
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 24)

Abstract

Lava caves represent a scientifically untapped habitat in which to study Earth’s microbial life and provide an outstanding environment in which to identify biosignatures for detecting life on other planets. Our studies of microbial mats and mineral deposits in lava caves in the Azores (Portugal), New Mexico, and Hawai‘i (USA) have revealed a wealth of bacterial diversity through molecular genetic analyses and scanning electron microscopy. Much of this bacterial diversity represents novel species, as well as novel higher taxonomic units, such as genera and families. Geochemical analyses of infiltrating water, soils, and rock walls suggest the presence of organic carbon that may fuel heterotrophy and reduce inorganic energy sources, such as iron, manganese, and sulfur to fuel chemolithotrophy. Scanning electron microscopy studies of mineral deposits, accompanied by molecular studies, reveals the presence of extensive biological morphologies in a variety of mineral deposits decorating lava cave walls. These studies provide a rationale for examining mineral deposits in lava caves on extraterrestrial bodies in the search for life or its remnants.

Keywords

Mineral Deposit Twilight Zone Life Detection Cave Environment Cave Deposit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors thank Hawaii Volcanoes National Park and El Malpais National Park for collecting permits and support of our research and landowners in Hawai‘i and the Azores for permission to collect samples. The authors thank Don Coons, Emily Davis, Mike Warner, Larry Flemming, Jim Werker, Val Hildreth Werker, Ara Kooser, Fernando Pereira, Airidas Dapkevicius, Rita Varela, and many more who assisted with fieldwork. Funding was provided by the Cave Conservancy of the Virginias Undergraduate Research Grant, Alliance for Minority Participation, T&E Inc., Western National Park Association, Fundação para a Ciência e a Tecnologia, and Kenneth Ingham Consulting. The project was supported in part by the Undergraduate Opportunities program at the Museum of Southwestern Biology (NSF-DEB 0731350). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. We also acknowledge technical support from the Molecular Biology Facility, which is supported by NIH grant number P20RR018754. Ali Ghadimi provided scanning electron micrographs of the pink hexagons. The authors gratefully acknowledge the photographic contributions of Kenneth Ingham.

References

  1. Ashmole MJ, Ashmole NP (1988) Arthropod communities supported by biological fallout on recent lava flows in the Canary Islands. Entomol Scand Supp 32:67–88Google Scholar
  2. Ashmole NP, Oromi P, Ashmole MJ, Martín JL (1992) Primary faunal succession in volcanic terrain: lava and cave studies on the Canary Islands. Biol J Linn Soc 46:207–234CrossRefGoogle Scholar
  3. Banfield JF, Nealson KH (eds) (1998) Geomicrobiology: interactions between microbes and minerals. Mineralogical Society of America, Washington, DC [Rev. Mineral.No. 35]Google Scholar
  4. Bell JF III, McSween HY Jr, Crisp JA, Morris RV, Murchie SL, Bridges NT, Johnson JR, Britt DT, Golombek MP, Moore HJ, Ghosh A, Bishop JL, Anderson RC, Brückner J, Economou T, Greenwood JP, Gunnlaugsson HP, Hargraves RM, Hviid S, Knudsen JM, Madsen MB, Reid R, Rieder R, Soderblom L (2000) Mineralogic and compositional properties of Martian soil and dust: results from Mars pathfinder. J Geophys Res 105:1721–1755ADSCrossRefGoogle Scholar
  5. Borges P, Oromí P (1991) Cave-dwelling ground beetles of the Azores North Atlantic Ocean Coleoptera Carabidae. Mémoires de Biospéologie 18:185–192Google Scholar
  6. Borges PAV, Oromí P (in press) The Azores. In: Juberthie C, Decu V (eds) From encyclopaedia biospeleologica.Tome Ia Amérique et Europe, Sociétè de Biospéleologie, MoulisGoogle Scholar
  7. Boston PJ (2004) Extraterrestrial caves. In: Gunn J (ed) From encyclopedia of cave and Karst science. Fitzroy-Dearborn Publishers Ltd., London, pp 355–358Google Scholar
  8. Boston PJ (2010) Location, location, location! lava caves on Mars for habitat, resources, and science. J Cosmol 12:3957–3979Google Scholar
  9. Boston PJ, Ivanov MV, McKay CP (1992) On the possibility of chemosynthetic ecosystems in subsurface habitats on Mars. Icarus 95:300–308ADSCrossRefGoogle Scholar
  10. Boston PJ, Hose LD, Northup DE, Spilde MN (2006) The microbial communities of sulfur caves; a newly appreciated geologically driven system on Earth and potential model for Mars. In: Derek C. Ford, William B. White, Harmon RS, Wicks CM (eds) Perspectives on karst geomorphology, hydrology, and geochemistry; a tribute volume to Special Paper, vol 404 Geological Society of America, pp 331–344Google Scholar
  11. Carr MH (1996) Water on early Mars. In: Bock GR, Goode JA (eds) From evolution of hydrothermal ecosystems on Earth (and Mars?). Wiley Publishing, Chichester, pp 249–265Google Scholar
  12. Chapelle FH, O’Neill K, Bradley PM, Methe BA, Ciufo SA, Knobel LL, Lovley DR (2002) A hydrogen-based subsurface microbial community dominated by methanogens. Nature 415:312–315ADSCrossRefGoogle Scholar
  13. Chivian D, Brodie EL, Alm EJ, Culley DE, Dehal PS, DeSantis TZ, Gihring TM, Lapidus A, Lin LH, Lowry SR, Moser DP, Richardson P, Southam G, Wanger G, Pratt LM, Andersen GL, Hazen TC, Brockman FJ, Arkin AP, Onstott TC (2008) Environmental genomics reveals a single-species ecosystem deep within Earth. Science 322:275–278ADSCrossRefGoogle Scholar
  14. Culver DC (1982) Cave life: evolution and ecology. Harvard University Press, Cambridge, MAGoogle Scholar
  15. Cushing GE, Titus TN, Wynne JJ, Christensen PR (2007) THEMIS observes possible cave skylights on Mars. Geophys Res Lett 34:L17201. doi: 10.1029/2007GL030709 ADSCrossRefGoogle Scholar
  16. Dahl C, Friedrich CG (eds) (2008) Microbial sulfur metabolism. Springer, HeidelbergGoogle Scholar
  17. Ferry JG (2010) The chemical biology of methanogenesis. Planet Space Sci 58:1775–1783ADSCrossRefGoogle Scholar
  18. Fisk MR, Giovannoni SJ (1999) Sources of nutrients and energy for a deep biosphere on Mars. J Geophys Res 104(E12):11805–11815ADSCrossRefGoogle Scholar
  19. Frederick RD, Billings TL, McGown RD, Walden BE (2000) Martian ice caves. In: Workshop on concepts and approaches for Mars exploration, July 2000, pp 114–115 (Abstract 6062)Google Scholar
  20. Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111:3–49CrossRefGoogle Scholar
  21. Garcia MG, Moya M, Spilde MN, Stone FD, Northup DE (2009) Discovering new diversity in Hawaiian lava tube microbial mats. Proc Int Cong Speleol 1:364–369Google Scholar
  22. Gomez-Alvarez V, King GM, Nusslein K (2007) Comparative bacterial diversity in recent Hawaiian volcanic deposits of different ages. FEMS Microbiol Ecol 60:60–73zbMATHCrossRefGoogle Scholar
  23. Groth I, Vetterman R, Schuetze B, Schumann P, Saiz-Jimenez C (1999) Actinomycetes in Karstic caves of northern Spain (Altamira and Tito Bustillo). J Microbiol Method 36:115–122CrossRefGoogle Scholar
  24. Hadley NF, Ahearn GA, Howarth FG (1981) Water and metabolic relations of cave-adapted and epigean lycosid spiders in Hawaii. J Arachnol 9:215–222Google Scholar
  25. Haruyama J, Hioki K, Shirao M, Morota T, Hiesinger H, van der Bogert CH, Miyamoto H, Iwasaki A, Yokota Y, Ohtake M, Matsunaga T, Hara S, Nakanotani S, Pieters CM (2009) Possible lunar lava tube skylight observed by SELENE cameras. Geophys Res Lett 36:L21206ADSCrossRefGoogle Scholar
  26. Howarth FG (1972) Cavernicoles in lava tubes on the island of Hawaii. Science 75:325–326ADSCrossRefGoogle Scholar
  27. Howarth FG (1973) The cavernicolous fauna of Hawaiian lava tubes, Part 1. Introduction. Pac Insects 15:139–151Google Scholar
  28. Howarth FG (1981a) Lava tube ecosystem as a study site. In: Mueller-Dombois D, Bridges KW, Carson HL (eds) From island ecosystems: biological organization in selected Hawaiian communities. US/IBP synthesis series, vol 15.Hutchinson Ross Publishing Co., Stroudsburg, pp 222–230Google Scholar
  29. Howarth FG (1981b) Community structure and niche differentiation in Hawaiian lava tubes, Chapter 7. In: Mueller-Dombois D, Bridges KW, Carson HL (eds) From island ecosystems: biological organization in selected Hawaiian communities. US/IBP synthesis series, vol 15.Hutchinson Ross Publishing Co., Stroudsburg, pp 318–336Google Scholar
  30. Howarth FG (1983) Ecology of cave arthropods. Annu Rev Entomol 28:365–389CrossRefGoogle Scholar
  31. Howarth FG (1993) High-stress subterranean habitats and evolutionary change in cave-inhabiting arthropods. Am Nat 142:S65–S77CrossRefGoogle Scholar
  32. Howarth FG (1996) A comparison of volcanic and karstic cave communities. In: Oromi P (ed) From proceedings seventh international symposium on vulcanospeleology. Canary Islands. Forimpres, SA, Barcelona, pp 63–68Google Scholar
  33. Howarth FG, Stone FD (1990) Elevated carbon dioxide levels in Bayliss cave, Australia: implications for the evolution of obligate cave species. Pac Sci 44:207–218Google Scholar
  34. Howarth FG, James SA, McDowell W, Preston DJ, Imada CT (2007) Identification of roots in lava tube caves using molecular techniques: implications for conservation of cave arthropod faunas. J Insect Conserv 11:251–261CrossRefGoogle Scholar
  35. HVGDS (Hawaii Volcano Geochemical Data Set) (1995) Kohala, Mauna Kea, and Kilauea Data Sets. http://www.bishopmuseum.org/research/natsci/geology/geochem.html
  36. Izawa MRM, Banerjee NR, Flemming RL, Bridge NJ, Schultz C (2010) Basaltic glass as a habitat for microbial life: implications for astrobiology and planetary exploration. Planet Space Sci 58:583–591ADSCrossRefGoogle Scholar
  37. Janssen PH (2006) Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol 72:1719–1728CrossRefGoogle Scholar
  38. Jasinska EJ, Knott B, McComb AJ (1996) Root mats in ground water: a fauna- rich cave habitat. J North Am Benthol Soc 15:508–519CrossRefGoogle Scholar
  39. Laskar J (2004) Long term evolution and chaotic diffusion of the insolation quantities of Mars. Icarus 170:343–364MathSciNetADSCrossRefGoogle Scholar
  40. Lazzarini A, Cavaletti L, Toppo G, Marinelli F (2000) Rare genera of actinomycetes as potential producers of new antibiotics. Anton Leeuw 78:99–405CrossRefGoogle Scholar
  41. Léveillé RJ, Datta S (2010) Lava tubes and basaltic caves as astrobiological targets on Earth and Mars: a review. Planet Space Sci 58:592–598ADSCrossRefGoogle Scholar
  42. Levrard B, Forget F, Montmessin F, Laskar J (2004) Recent ice-rich deposits formed at high latitudes on Mars by sublimation of unstable equatorial ice during low obliquity. Nature 431:1072–1075ADSCrossRefGoogle Scholar
  43. McCollom TM (1999) Methanogenesis as a potential source of chemical energy for primary biomass production by autotrophic organisms in hydrothermal systems on Europa. J Geophys Res 104(E12):30729–30742ADSCrossRefGoogle Scholar
  44. McKay CP (2001) The deep biosphere: lessons for planetary exploration. In: Fredrickson JK, Fletcher M (eds) From subsurface microbiology and biogeochemistry. Wiley, New York, pp 315–327Google Scholar
  45. Melim LA, Northup DE, Spilde MN, Jones B, Boston PJ, Bixby BJ (2008) Reticulated filaments in cave pool speleothems: microbe or mineral? J Cave Karst Stud 70:135–141Google Scholar
  46. Merzaevaa OV, Shirokikh IG (2006) Colonization of plant rhizosphere by actinomycetes of different genera. Microbiology 75:226–230CrossRefGoogle Scholar
  47. Moore GW, Sullivan N (1997) Speleology: caves and the cave environment. Cave Books, St. Louis, pp 93–98Google Scholar
  48. Morris RV, Golden DC, Bell JF III, Lauer HV Jr, Adams JB (1993) Pigmenting agents in Martian soils: inferences from spectral, Mossbauer, and magnetic properties in nanophase and other iron oxides in Hawaiian palagonitic soil PN-9. Geochim Cosmochim Acta 57:4597–4609ADSCrossRefGoogle Scholar
  49. Moya M, Garcia MG, Spilde MN, Northup DE (2009) Composition of bacterial mats in El Malpias, National Monument, New Mexico, USA: comparison and contrasts with bacterial communities in Hawai‘i lava tubes. Proc Int Congr Speleol 2:709–713Google Scholar
  50. Norovsuren Z, Zenova GM, Mosina LV (2007) Actinomycetes in the rhizosphere of semidesert soils of Mongolia. Eurasian Soil Sci 40:415–418ADSCrossRefGoogle Scholar
  51. Northup DE, Crawford CS (1992) Patterns of fecundity and age class distribution of rhaphidophorid “camel crickets” (Ceuthophilus longipesand C. carlsbadensis) from Carlsbad Cavern. Am Midland Nat 127:183–189CrossRefGoogle Scholar
  52. Northup DE, Welbourn WC (1994) Life in the twilight zone – lava-tube ecology. N M Bur Mines Miner Resour Bull 156:69–81Google Scholar
  53. Northup DE, Lavoie LH, Studier EH (1993) Bioenergetics of Ceuthophiluscamel crickets from Carlsbad Caverns National Park. Comp Biochem Physiol 106A:525–529CrossRefGoogle Scholar
  54. Northup DE, Connolly CA, Trent A, Peck VM, Spilde MN, Welbourn WC, Natvig DO (2008) The nature of bacterial communities in Four Windows Cave, El Malpais National Monument, New Mexico, USA. AMCS Bull 19:119–125Google Scholar
  55. Northup DE, Melim LA, Spilde MN, Hathaway JJM, Garcia MG, Moya M, Stone FD, Boston PJ, Dapkevicius MENL, Riquelme C (2011) i. Lava cave microbial communities within mats and secondary mineral deposits: Implications for life detection on other planets. Astrobiology 11(7):601–618Google Scholar
  56. Oromí P, Martin JL (1992) The Canary Islands: subterranean fauna: characterization and composition. In: Camacho AI (ed) From the natural history of biospeleology. Museo Nacional de Ciencias Naturales, Madrid, pp 527–563Google Scholar
  57. Palmer AN (2007) Cave geology. Cave Books, DaytonGoogle Scholar
  58. Parnell J, Boyce AJ, Blamey NJF (2010) Follow the methane: the search for a biosphere and the case for sampling serpentinites on Mars. Int J Astrobiol 9:193–200. doi: 10.1017/S1473550410000200 CrossRefGoogle Scholar
  59. Snider JR (2010) Comparison of microbial communities on roots, ceilings and floors of two lava tube caves in New Mexico. Unpublished master’s thesis, Albuquerque, NMGoogle Scholar
  60. Snider JR, Moya M, Garcia MG, Spilde MN, Northup DE (2009) Identification of the microbial communities associated with roots in lava tubes in New Mexico and Hawai‘i. Proc Int Congr Speleol 2:718–723Google Scholar
  61. Staley JT, Crawford R (1975) The biologist’s chamber: lava tube slime. Cascade Caver 14:20–21Google Scholar
  62. Stone FD, Howarth FG, Hoch H, Asche M (2004) Root communities in lava tubes. In: Culver DC, White WB (eds) From encyclopedia of caves. Elsevier Academic Press, Burlington, pp 477–484Google Scholar
  63. Stoner MF, Howarth FG (1981) Community structure and niche differentiation in Hawaiian lava tubes. In: Mueller Dombois D, Bridges KW, Carson HL (eds) From Island ecosystems: biological organization in selected Hawaiian communities. Hutchinson Ross Publ. Co., Stroudsburg, pp 318–336Google Scholar
  64. Stroncik NA, Schmincke HU (2002) Palagonite – a review. Int J Earth Sci 91:680–697CrossRefGoogle Scholar
  65. Thorseth IH, Furnes H, Heldal M (1992) The importance of microbiological activity in the alteration of natural basaltic glass. Geochim Cosmochim Acta 56:845–850ADSCrossRefGoogle Scholar
  66. Thorseth IH, Fumes H, Tumyr O (1995) Textural and chemical effects of bacterial-activity on basaltic glass – an experimental approach. Chem Geol 119:139–160CrossRefGoogle Scholar
  67. Villar SEJ, Edwards HGM, Benning LG (2006) Raman spectroscopic and scanning electron microscopic analysis of a novel biological colonisation of volcanic rocks. Icarus 184:158–169ADSCrossRefGoogle Scholar
  68. Westall F, Brack A, Hofmann BA, Horneck G, Kurat G, Maxwell J, Ori GG, Pillinger C, Raulin F, Thomas N, and others (2000) An ESA study for the search for life on Mars. Planet Space Sci 48:181–202ADSCrossRefGoogle Scholar
  69. Williams KE, McKay CP, Toon OB, Head JW (2010) Do ice caves exist on Mars? Icarus 209:358–368ADSCrossRefGoogle Scholar
  70. Wynne JJ, Titus TN, Chong Diaz G (2008) On developing thermal cave detection techniques for Earth, the Moon and Mars. Earth Planet Sci Lett 272:240–250ADSCrossRefGoogle Scholar
  71. Zhi XY, Li WJ, Stackebrandt E (2009) An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 59:589–608CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Diana E. Northup
    • 1
  • Jennifer J. M. Hathaway
    • 1
  • Jessica R. Snider
    • 7
  • Monica Moya Balasch
    • 1
  • Matthew G. Garcia
    • 1
  • Maria L. N. Enes Dapkevicius
    • 2
  • Cristina Riquelme Gabriel
    • 2
  • Fred D. Stone
    • 3
    • 6
  • Michael N. Spilde
    • 4
  • Penelope J. Boston
    • 5
  1. 1.Biology DepartmentUniversity of New MexicoAlbuquerqueUSA
  2. 2.CITA-A, Departamento de Ciências AgráriasUniversidade dos Açores, Rua Capitão João d`Ávila, São PedroTerceiraPortugal
  3. 3.University of Hawaii at HiloHiloUSA
  4. 4.Institute of Meteoritic University of New MexicoAlbuquerqueUSA
  5. 5.Earth and Environmental Sciences DepartmentNM Institute of Mining and TechnologySocorroUSA
  6. 6.Bishop MuseumHonoluluUSA
  7. 7.Texas State UniversityRiver Systems Institute - Texas Stream TeamSan MarcosUSA

Personalised recommendations