Advertisement

The Astrobiological Potential of Polar Dunes on Mars

  • Ákos Kereszturi
  • Szaniszló Bérczi
  • András Horváth
  • Tamás Pócs
  • András Sik
  • Szathmáry Eörs
Chapter
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 24)

Abstract

Analysis of seasonally frost-covered Martian dunes and terrestrial extremophiles in cryptobiotic crust revealed that circumpolar dark dunes on Mars form an ideal habitat for hypothetic photosynthesizing organisms on the planet. In springtime, the dark basaltic dunes show ephemeral seepage-like features on their surface, which (based on theoretical calculations) may be the result of interfacial water or bulk brine-related movement. Such a thin water film may also decompose the aggressive oxidants there. Temperature values in spring around noon could be favorable for metabolism of known extremophiles on Earth. During this warming period, the water loss could be reduced by densely packed grain structure of the soil, hygroscopic salts, and the embedding polysaccharide-like materials, as it was observed in the samples of cryptobiotic crust from hot and cold deserts on Earth. The best periods for H2O uptake are the nighttime hours.

Terrestrial cyanobacteria living 2–4 mm below the rock surface in the so-called cryptobiotic crust demonstrate possible analogous strategies for survival in the Martian environment. On Mars, even a thin grain layer coverage decreases water loss rate and screens UV radiation. The organisms we collected in hot and cold deserts on Earth showed examples for survival strategies like seasonal movement, task sharing in UV screening, and a special method called optical fiber strategy (whereby organisms conduct light to the deeper subsurface). The terrestrial observation of recovery of cyanobacteria in minutes after wetting also supports the supposed long dormant-short active life cycle of hypothetical organisms on Mars.

The circumpolar region on Mars has been found to be one of the best possible habitats today, because water ice and springtime-elevated temperature are both present there. These dark dunes are less oxidized than the average Martian surface, and their grain structure enhances the trapping of volatiles, while their dark color helps the fast warming in daytime.

Keywords

Cold Desert Mars Global Surveyor Martian Surface Mucilaginous Sheath Hygroscopic Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

CRIS

Compact Reconnaissance Imaging Spectrometer for Mars

DDS

Dark Dune Spots

HiRISE

High Resolution Imaging Science Experiment

HRSC

High Resolution Stereo Camera

MOC

Mars Orbiter Camera

MOLA

Mars Orbiter Laser Altimeter

TES

Thermal Emission Spectrometer

MSO

Hypothetical Mars Surface Organism

Notes

Acknowledgments

The work is sponsored by the European Space Agency, the ESA ECS-project No. 98076 and the Hungarian Space Office.

References

  1. Altheide T, Chevrier V, Nicholson C, Denson J (2009) Experimental investigation of the stability and evaporation of sulfate and chloride brines on Mars. Earth Planet Sci Lett 282:69–78ADSCrossRefGoogle Scholar
  2. Beaty D, Heldmann J, Braun B, Clark B, Easter B, Hinners N, Mattingly R, Peach L, Shearer C, Terrile R (2006) Findings of the MEPAG Mars Forward Lunar Objectives Science Analysis Group, Unpublished document by the Mars Exploration Program Analysis GroupGoogle Scholar
  3. Bérczi Sz, Gánti T, Horváth A, Gesztesi A, Szathmáry E (2001) Morphology of the Dark Dune Spots (DDSs) on Southern Polar Region of Mars, exclusive symposium “Potential biomarkers on Mars”. ESTEC, NoordwijkGoogle Scholar
  4. Bertsch A (1966) Ber den CO2-Gaswechsel einiger Flechten nach Wasserdampfaufnahme. Planta 68:157–166CrossRefGoogle Scholar
  5. Borgnia M, Nielsen S, Engel A, Agre P (1999) Cellular and molecular biology of the aquaporin water channels. Annu Rev Biochem 68:425–458CrossRefGoogle Scholar
  6. Bryson KL, Chevrier V, Sears DWG, Ulrich R (2008) Stability of ice on Mars and the water vapour diurnal cycle: experimental study of the sublimation of ice through a fine-grained basaltic regolith. Icarus 196:446–458ADSCrossRefGoogle Scholar
  7. Campbell SE (1979) Soil stabilization by a prokaryotic desert crust: implications for Precambrian land biota. Orig Life Evol Biosph 9:335–348CrossRefGoogle Scholar
  8. Catling DC, Claire MW, Quinn RC, Zahnle KJ, Clark BC, Kounaves S, Hecht MH (2009) Possible atmospheric origins of perchlorate on Mars. In: 40th LPS conference, abstract 1567Google Scholar
  9. Chevrier VF, Altheide TS (2008) Low temperature aqueous ferric sulfate solutions on the surface of Mars. Geophys Res Lett 35:L22101. doi: 10.1029/2008GL035489 ADSCrossRefGoogle Scholar
  10. Chevrier V, Rochette P, Mathe EP, Grauby O (2004) Weathering or iron-rich phases in simulated Martian atmospheres. Geology 32:1033–1036ADSCrossRefGoogle Scholar
  11. Chevrier V, Mathe PE, Rochette P, Grauby O, Bourrie G, Trolard F (2006) Iron weathering products in a CO2+(H2O or H2O2) atmosphere: implications for weathering processes on the surface of Mars. Geochim Chosmochim Acta 70:4295–4317ADSCrossRefGoogle Scholar
  12. Chevrier VF, Ostrowski DR, Sears DWG (2008) Experimental study of the sublimation of ice through an unconsolidated clay layer: implications for the stability of ice on Mars and the possible diurnal variations in atmospheric water. Icarus 196:459–476ADSCrossRefGoogle Scholar
  13. Chevrier VF, Hanley J, Altheide TS (2009) Stability of perchlorate hydrates and their liquid solutions at the Phoenix landing site. Mars Geophys Res Lett 36:LXXXXX. doi: 10.1029/2009GL037497 Google Scholar
  14. Cockell CS, Stokes MD (2006) Hypolithic colonization of opaque rocks in the Arctic and Antarctic Polar Desert. Arctic Antarct Alpine Res 38:335–342CrossRefGoogle Scholar
  15. Cockell CS, Schuerger AC, Billi D, Friedmann I, Panitz C (2005) Effects of a simulated Martian UV flux on the cyanobacterium, Chroococcidiopsis sp. 029. Astrobiology 5:127–140ADSCrossRefGoogle Scholar
  16. Córdoba-Jabonero C, Zorzano MP, Selsis F, Patel MR, Cockell CS (2005) Radiative habitable zones in Martian polar environments. Icarus 165:253–276Google Scholar
  17. Cull SC, Arvidson R, Mellon M, Wiseman S, McGuire P, Clark R, Titus TN, Searls ML (2009) Seasonal ices at the Mars Phoenix landing site: observations from HiRISE and CRISM. In: 40th LPS conference, abstract 1814Google Scholar
  18. Dartnell LR, Desorgher L, Ward JM, Coates AJ (2006) Modelling the surface and subsurface Martian radiation environment: implications for astrobiology. Geophys Res Lett 34:L02207CrossRefGoogle Scholar
  19. Dartnell LR, Desorgher L, Ward JM, Coates AJ (2007) Martian sub-surface ionising radiation: biosignatures and geology. Biogeosci Discuss 4:455–492ADSCrossRefGoogle Scholar
  20. de la Vega UP, Rettberg P, Reitz G (2007) Simulation of the environmental climate conditions on Martian surface and its effect on Deinococcus radiodurans. Adv Space Res 40:1672–1677ADSCrossRefGoogle Scholar
  21. de Vera JP, Horneck G, Reppberg P, Ott S (2004) The potential of the lichen symbiosis to cope with the extreme conditions of outer space II: germination capacity of lichen ascospores in response to simulated space conditions. Adv Space Res 33:1236–1243ADSCrossRefGoogle Scholar
  22. de Vera J-P, Rettberg P, Ott S (2008) Life at the limits: capacities of isolated and cultured lichen symbionts to resist extreme environmental stresses. Orig Life Evol Biosph 38:457–468ADSCrossRefGoogle Scholar
  23. Dor I, Danin A (2001) Life strategies of Microcoleus vaginatus: a crust-forming cyanophyte in desert soils. Nova Hedwigia Beiheft 123:317–339Google Scholar
  24. Feldman WC, Bourke MC, Elphic RC, Maurice S, Bandfield J, Prettyman TH, Diez B, Lawrencec DJ (2008) Hydrogen content of sand dunes within Olympia Undae. Icarus 196:422–432ADSCrossRefGoogle Scholar
  25. Friedmann I (1986) The Antarctic cold desert and the search for traces of life on Mars. Adv Space Res 6:265–268ADSCrossRefGoogle Scholar
  26. Friedmann EI, Kappen L, Meyer MA, Nienow JA (1993) Long-term productivity in the cryptoendolithic microbial community of the Ross Desert, Antarctica. Microb Ecol 25:51–69CrossRefGoogle Scholar
  27. Gánti T, Horváth A, Gesztesi A, Bérczi Sz, Szathmáry E (2002) Defrosting and melting, not defrosting alone. In: 33rd LPS conference, abstract 1221Google Scholar
  28. Garcia-Pichel F, Belnap J (1996) Microenvironments and microscale productivity of cyanobacterial desert crust. J Phycol 32:774–782CrossRefGoogle Scholar
  29. Gibson EK, McKay DS, Thomas-Keprta KL, Clemett SJ, Wentworth SJ (2009) Development of life on early Mars. In: 40th LPS conference, abstract 1175Google Scholar
  30. Gilichinsky DA, Wagener S, Vishnivetskaya TA (1995) Permafrost microbiology. Permafrost Periglac Proc 6:281–291CrossRefGoogle Scholar
  31. Head JW, Marchant DR, Dickson JL, Levy JS, Morgan GA (2007) Slope streaks in the Antarctic Dry Valleys: characteristics, candidate formation mechanisms, and implications for slope streak formation in the Martian environment. In: 7th international conference on Mars, abstract 3114Google Scholar
  32. Horváth A, Gánti T, Gesztesi A, Bérczi Sz, Szathmáry E (2001) Probable evidences of recent biological activity on Mars: appearance and growing of dark dune spots in the south polar region. In: 32nd LPS conference, abstract 1543Google Scholar
  33. Horváth A, Bérczi Sz, Gánti T, Gesztesi A, Szathmáry E (2002) The “Inca City” region of Mars: test field for Dark Dune Spots origin. In: 33rd LPS conference, abstract 1109Google Scholar
  34. Horváth A, Gánti T, Gesztesi A, Bérczi Sz, Szathmáry E (2003) Probable evidence of recent life on Mars. In: Proceedings of Russian Academy of Science, IK-30, RAN, Moscow, pp 106–112Google Scholar
  35. Horváth A, Kereszturi Á, Bérczi Sz, Sik A, Pócs T, Gesztesi A, Gánti T, Szathmáry E (2005) Annual change of Martian DDS-seepages. In: 34th LPS conference, abstract 1128Google Scholar
  36. Horváth A, Kereszturi A, Bérczi Sz, Sik A, Pócs T, Gánti T, Szathmáry E (2009) Analysis of dark albedo features on a southern polar dune field of Mars. Astrobiology 9:90–103ADSCrossRefGoogle Scholar
  37. Hudson TL, Zent A, Hecht MH, Wood S, Cobos D (2009) Near-surface humidity at the Phoenix landing site as measured by the Thermal and Electrical Conductivity Probe (TECP). In: 40th LPS conference, abstract 1109Google Scholar
  38. Jakosky BM, Nealson KH, Bakermans C, Ley RE, Mellon MT (2003) Subfreezing activity of microorganisms and the potential habitability of Mars’ polar regions. Astrobiology 3:343–350ADSCrossRefGoogle Scholar
  39. Junge K, Eicken H, Deming JW (2004) Bacterial activity at −2 to −200 C in arctic wintertime sea ice. Appl Environ Microbiol 70:550–557CrossRefGoogle Scholar
  40. Kereszturi A, Sik A, Horváth A, Reiss D, Jaumann R, Neukum G (2007) Season-dependent behavior of Dark Dune Spots on Mars. In: 38th LPS conference, abstract 1846Google Scholar
  41. Kereszturi A, Horváth A, Sik A, Kuti A, Bérczi Sz, Gánti T, Pócs T, Szathmáry E (2009a) Possible liquid-like water produced seepage features on Mars. In: 40th LPS conference, abstract 1111Google Scholar
  42. Kereszturi A, Möhlmann D, Bérczi Sz, Gánti T, Kuti A, Sik A, Horváth A (2009b) Recent rheologic processes on dark polar dunes of Mars: driven by interfacial water? Icarus 201:492–503ADSCrossRefGoogle Scholar
  43. Kieffer HH (2000) Annual punctuated CO2slab-ice and jets on Mars. In: International conference on Mars polar science exploration, abstract 4095Google Scholar
  44. Kieffer HH, Christensen PR, Titus TN (2006) CO2jets formed by sublimation beneath translucent slab ice in Mars’ seasonal south polar ice cap. Nature 442:793–796ADSCrossRefGoogle Scholar
  45. Kminek G, Bada JL (2006) The effect of ionizing radiation on the preservation of amino acids on Mars. Earth Planet Sci Lett 245:1–5ADSCrossRefGoogle Scholar
  46. Knauth PL, Burt DM (2002) Eutectic brines on Mars: origin and possible relation to young seepage features (note). Icarus 158:267–271ADSCrossRefGoogle Scholar
  47. Kuhlman KR, Venkat P, La Duc MT, Kuhlman GM, McKay CP (2008): Evidence of a microbial community associated with rock varnish at Yungay, Atacama Desert, Chile. J Geophys Res 113:G4, CiteID G04022Google Scholar
  48. Kuzmin RO, Zabalueva EV, Christensen PR (2009a) Mapping of the water ice amount in the Martian surface soil on the periphery of the retreating seasonal northern polar cap based on the TES data. In: 40th LPS conference, abstract 1917Google Scholar
  49. Kuzmin RO, Zabalueva EV, Christensen PR (2009b) Estimation and mapping of wintertime increase in water ice content of the Martian surface soil based on seasonal Thermal Emission Spectrometer thermal inertia variations. J Geophys Res 114:E4, CiteID E04011Google Scholar
  50. Lange OL (1969) Experimentelle-ökologische Untersuchungen an Flechten der Negev-Wüiste. I. CO2-Gaswechsel yon Ramalina maciformis (Del.) Bory unter kontrollierten Bedingungen im Laboratorium. Flora 158:324–359Google Scholar
  51. Lange OL, Bertsch A (1965) Photosynthese der Wustenflechte Ramalina maciformis nach Wasserdampfaufnahme aus dem Luftraum. Naturwissenschaften 52:215–216CrossRefGoogle Scholar
  52. Levin GV, Straat PA (1977) Recent results from the Viking labeled release experiment on Mars. J Geophys Res 82:4663–4667ADSCrossRefGoogle Scholar
  53. Levin GV, Straat PA (1979) Viking labeled release biology experiment – interim results. Science 194:1322–1329ADSCrossRefGoogle Scholar
  54. Mancinelli RL (1989) Peroxides and the survivability of microorganisms on the surface of Mars. Adv Space Res 9:191–195ADSCrossRefGoogle Scholar
  55. Maynard Smith J, Szathmáry E (1995) The major transitions in evolution. Oxford University Press, OxfordGoogle Scholar
  56. Möhlmann D (2004) Water in the upper Martian surface at mid- and low-latitudes: presence, state, and consequences. Icarus 168:318–323ADSCrossRefGoogle Scholar
  57. Möhlmann D (2008) The influence of van der Waals forces on the state of water in the shallow subsurface of Mars. Icarus 195:131–139ADSCrossRefGoogle Scholar
  58. Moores JE, Smith PH, Tanner R, Schuerger AC, Venkateswaran KJ (2007) The shielding effect of small-scale martian surface geometry on ultraviolet flux. Icarus 192:417–433ADSCrossRefGoogle Scholar
  59. Oren A, Seckbach J (2001) Oxygenic photosynthetic microorganism in extreme environments. Nova Hedwigia Beiheft 123:13–31Google Scholar
  60. Oyama VI, Berdahl BJ (1977) The Viking gas exchange experiment results from Chryse and Utopia surface samples. J Geophys Res 82:4669–4676ADSCrossRefGoogle Scholar
  61. Peli E, Lei N, Pócs T, Porembski S, Laufer Zs, Tuba Z (2007) Ecophysiological properties of desiccation-tolerant cryptobiotic crusts of tropical inselberg rocks to rehydration following desiccation. Cereal Res Commun 35. doi: 10.1556/CRC.35.2007.2.171
  62. Pócs T (2009) Cyanobacterial crust types, as strategies for survival in extreme habitats. Acta Botanica Hungarica 51:147–178CrossRefGoogle Scholar
  63. Pócs T, Horváth A, Gánti T, Bérczi Sz, Szathmáry E (2003) On the basis of terrestrial analogue site studies are the Dark Dune Spots remnants of the Crypto-Biotic-Crust of Mars? In: 38th Vernadsky/Brown abstract M8079Google Scholar
  64. Pócs T, Horváth A, Gánti T, Bérczi Sz, Szathmáry E (2004) Possible Crypto-Biotic-Crust on Mars? In: Proceedings of the III European workshop on Exo-Astrobiology. Mars: the search for life, ESA SP-545, Madrid, pp 265–266Google Scholar
  65. Potts M, Friedmann EI (1981) Effects of water stress on cryptoendolithic cyanobacteria from hot desert rocks. Arch Microbiol 130:267–271CrossRefGoogle Scholar
  66. Price B (2000) A habitat for psychrophiles in deep Antarctic ice. PNAS 97:1247–1251ADSCrossRefGoogle Scholar
  67. Price B, Sowers T (2004) Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. PNAS 101:4631–4636ADSCrossRefGoogle Scholar
  68. Prieto-Ballesteros O, Fernández-Remolar DC, Rodríguez-Manfredi JA, Selsis F, Manrubia SC (2006) Spiders: water-driven erosive structures in the Southern Hemisphere of Mars. Astrobiology 6:651–667ADSCrossRefGoogle Scholar
  69. Renno NO, Bos BJ, Catling D, Clark BC, Drube L, Fisher D, Goetz W, Hviid SF, Keller HU, Kok JF, Kounaves SP, Leer K, Lemmon M, Madsen MB, Markiewicz WJ, Marshall J, McKay C, Mehta M, Smith M, Smith PH, Stoker C, Young SMM, Zent A (2009a) Physical and thermodynamical evidence for liquid water on Mars. In: 40th LPS conference, abstract 1440Google Scholar
  70. Renno NO, Bos BJ, Catling D, Clark BC, Drube L, Fisher D, Goetz W, Hviid SF, Keller H, Kok JF, Kounaves SP, Leer K, Lemmon M, Madsen MBo, Markiewicz W, Marshall J, McKay C, Mehta M, Smith M, Zorzano MP, Smith PH, Stoker C, Young SMM (2009b) Physical and thermodynamical evidence for liquid water on Mars. J Geophys Res (submitted)Google Scholar
  71. Schuerger AC, Mancinelli RL, Kern RG, Rothschild LJ, McKay CP (2003) Survival of endospores of Bacillus subtilis on spacecraft surfaces under simulated Martian environments: implications for the forward contamination of Mars. Icarus 165:253–276ADSCrossRefGoogle Scholar
  72. Schulze-Makuch D, Houtkooper J, Cooper J (2007) Oxidants: chemical energy for life on Mars and in the outer Solar System. American Geophysical Union, Fall Meeting, abstract #P11C-0698Google Scholar
  73. Smith PH, 35 coauthors (2009) H2O at the Phoenix landing site. Science 325:58–61ADSGoogle Scholar
  74. Szathmáry E, Gánti T, Horváth A, Bérczi Sz (2001) Possible biological aspect of DDSs on Mars, Exclusive symposium “Potential biomarkers on Mars”. ESTEC, NoordwijkGoogle Scholar
  75. Szathmáry E, Horváth A, Gánti T, Bérczi Sz, Gesztesi A (2002) Seasonal change and annual appearance of biogenic Dark Dune Spots on Mars. In: EGS XXVII conference, abstract PS-2Google Scholar
  76. Szathmáry E, Gánti T, Pócs T, Horváth A, Kereszturi A, Berzci Sz, Sik A (2007) Life in the dark dune spots of Mars: a testable hypothesis. In: Pudritz R, Higgs P, Stone J (eds) Planetary systems and the origin of life. Cambridge University Press, CambridgeGoogle Scholar
  77. Tirsch D, Jaumann R, Helbert J, Reiss D, Forget F, Poulet F, Neukum G (2006) Recent and fossil deposits of dark material in Martian Craters. In: EPSC 406Google Scholar
  78. Vishnivetskaja TA, Rokhina LG, Spirinas EV, Shatilovich AV, Voroboyova EA, Gilichinsky DA (2001) Ancient viable phototrops within the permafrost. Nova Hedwigia Beiheft 123:427–441Google Scholar
  79. Wallis MK, Wickramasinghe JT, Wickramasinghe NC (2009) Mars polar cap – a habitat for elementary life. Int J Astrobiol 8:117–119CrossRefGoogle Scholar
  80. Wynn-Williams DD (2000) Cyanobacteria in desert: life at the limit? In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer, Dordrecht, pp 341–361Google Scholar
  81. Zent A (2006) A historical search for the occurrence of habitable ground ice at the Phoenix landing site. In: 4th Mars polar science conference, abstract 8086Google Scholar
  82. Zent A (2008) A historical search for habitable ice at the Phoenix landing site. Icarus 196:385–408ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Ákos Kereszturi
    • 1
    • 2
    • 5
  • Szaniszló Bérczi
    • 1
    • 2
    • 3
  • András Horváth
    • 1
  • Tamás Pócs
    • 1
    • 4
  • András Sik
    • 1
    • 2
  • Szathmáry Eörs
    • 1
  1. 1.New Europe School for Theoretical Biology and EcologyBudapest, 5.Hungary
  2. 2.Institute of Geography and Earth SciencesEotvos Lorand University of SciencesBudapest Pázmány 1/cHungary
  3. 3.Institute of PhysicsEotvos Lorand University of SciencesBudapest Pázmány 1/AHungary
  4. 4.Department of BotanyEszterházy Károly CollegeEgerHungary
  5. 5.Konkoly Astronomical Institute, Research Centre for Astronomy and Earth SciencesHungarian Academy of SciencesBudapestHungary

Personalised recommendations