Antarctica as Model for the Possible Emergence of Life on Europa

  • Suman Dudeja
  • Aranya B. Bhattacherjee
  • Julian Chela-Flores
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 24)


From the point of view of the possibility of the existence of life on Europa, we should consider a lake called Vostok, which is the largest of about 80 subglacial lakes in Antarctica. Its surface is of approximately 14,000 km2and its volume is 1,800 km3. Indeed, this Ontario-sized lake in Eastern Antarctica is also deep, with a maximum depth of 670 m. On the other hand, from the point of view of microbiology, the habitat analogue provided by Lake Vostok for the Europa environment seems appropriate (Chela-Flores, 2001). At the time of writing, the ice above the lake has been cored to a depth of over 3,600 m, stopping just over 100 m over the surface of the lake itself. This work has revealed great diversity of single-celled organisms: yeast, actinomycetes, mycelian fungi (which remain viable for almost 40,000 years), diatoms, and most interestingly, 200,000 year old bacteria. Besides, it appears that water temperatures do not drop too far below zero centigrade, with the possibility of geothermal heating raising the temperatures above this level.


Galilean Satellite Subglacial Lake Geothermal Heating Freeze Lake Jovian Satellite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bhattacherjee AB, Chela-Flores J (2004) Search for bacterial waste as a possible signature of life on Europa. In: Seckbach J, Chela-Flores J, Owen T, Raulin F (eds) Cellular origin and life in extreme habitats and astrobiology, vol 7. Springer, Dordrecht, pp 257–260Google Scholar
  2. Bland MT, Showman AP, Tobie G (2009) The orbital–thermal evolution and global expansion of Ganymede. Icarus 200:207–221ADSCrossRefGoogle Scholar
  3. Carlson RW, Johnson RE, And Anderson MS (1999) Sulfuric acid on Europa and the radiolytic sulfur cycle. Science 286:97–99ADSCrossRefGoogle Scholar
  4. Cathey DD, Parker BC, Simmons GM Jr, Yongue WH Jr, Van Brunt MR (1981) The microfauna of algal mats and artificial substrates in Southern Victoria Land lakes of Antarctica. Hydrobiologia 85:3–15CrossRefGoogle Scholar
  5. Chela-Flores J (2001) The new science of astrobiology from genesis of the living cell to evolution of intelligent behavior in the universe. Kluwer Academic Publishers, Dordrecht, 279 ppGoogle Scholar
  6. Chela-Flores J (2010) Instrumentation for the search of habitable ecosystems in the future exploration of Europa and Ganymede. Int J Astrobiol 9(2):101–108 (Copyright holder: Cambridge University Press, 2010).∼chelaf/jcf_IJA_2010.pdf
  7. Chela-Flores J, Bhattacherjee AB, Dudeja S, Kumar N, Seckbach J (2009) Can the biogenicity of Europa’s surfical sulfur be tested simultaneously with penetrators and ion traps? Geophysical research abstracts, vol 11, EGU2009-0, 2009, EGU General Assembly 2009. The Austria Centre, Vienna, 22 AprGoogle Scholar
  8. Christner BC, Roysto-Bishop G, Foreman CM, Arnold BR, Tranter M, Welh KA, Lyons WB, Tspain AI, Studinger M, Priscu JC (2006) Limnological conditions in subglacial Lake Vostok, Antarctica. Limnol Oceanogr 51:2485–2501CrossRefGoogle Scholar
  9. Cooper JF, Johnson RE, Mauk BH, Garrett HB, Gehrels N (2001) Energetic ion and electron radiation of the icy Galilean satellites. Icarus 149:133–159ADSCrossRefGoogle Scholar
  10. Doran PT, Wharton RA Jr, Berry Lyons W (1994) Paleolimnology of the McMurdo Dry Valleys, Antarctica. J Paleolimnol 10:85–114CrossRefGoogle Scholar
  11. Dudeja S, Bhattacherjee AB, Chela-Flores J (2010) Microbial mats in Antarctica as models for the search of life on the Jovian moon Europa. In: Seckbach J, Oren A (eds) Microbial mats, in the COLE series, Springer (in press).∼chelaf/Dudeja.pdf
  12. Fagents SA (2003) Considerations for the effusive cryovolcanism on Europa: the post-Galileo perspective. J Geophys Res 108(E12):5139CrossRefGoogle Scholar
  13. Fanale FP, Granahan JC, McCord TB, Hansen G, Hibbitts CA, Carlson R, Matson D, Ocampo A, Kamp L, Smythe W, Leader F, Mehlman R, Greeley R, Sullivan R, Geissler P, Barth C, Hendrix A, Clark B, Helfenstein P, Veverka J, Belton MJS, Becker K, Becker T, the Galileo instrumentation teams NIMS, SSI, UVS (1999) Galileo’s multiinstrument spectral view of Europa’s surface composition. Icarus 139:179–188ADSCrossRefGoogle Scholar
  14. Gowen R, Smith A, Ambrosi R, Ballesteros OP, Barber S, Barnes D, Braithwaite C, Bridges J, Brown P, Church P, Collinson G, Coates A, Collins G, Crawford I, Dehant V, Dougherty M, Chela-Flores J, Fortes D, Fraser G, Yang Y, Grande M, Griffiths A, Grindrod P, Gurvits L, Hagermann A, Hoolst TV, Hussmann H, Jaumann R, Jones A, Jones G, Joy K, Karatekin O, Kargl G, Macagnano A, Mukherjee A, Muller P, Palomba E, Pike T, Proud B, Pullen D, Raulin F, Richter L, Ryden K, Sheridan S, Sims M, Sohl F, Snape J, Stevens P, Sykes J, Tong V, Stevenson T, Karl W, Wilson L, Wright I, Zarnecki J (2009) Looking for astrobiological signatures with penetrators on Europa. In: Physical and engineering sciences exploratory workshops, W08-115, co-funded by Life, Earth and Environmental Sciences: Biosignatures On Exoplanets; The Identity Of Life, Mulhouse, France, 22–26 June 2009.∼chelaf/ESFsummary.pdf
  15. Gowen RA, Smith A, Fortes AD, Barber S, Brown P, Church P, Collinson G, Coates AJ, Collins G, Crawford IA, Dehant V, Chela-Flores J, Griffiths AD, Grindrod PM, Gurvits LI, Hagermann A, Hussmann H, Jaumann R, Jones AP, Joy KH, Karatekin O, Miljkovic K, Palomba E, Pike WT, Prieto-Ballesteros O, Raulin F, Sephton MA, Sheridan MS, Sims M, Storrie-Lombardi MC, Ambrosi R, Fielding J, Fraser G, Gao Y, Jones GH, Kargl G, Karl WJ, Macagnano A, Mukherjee A, Muller JP, Phipps A, Pullan D, Richter L, Sohl F, Snape J, Sykes J, Wells N (2010) Penetrators for in situ sub-surface investigations of Europa. Adv Space Res (accepted for publication)Google Scholar
  16. Grasset O, Lebreton J-P, Blanc M, Dougherty M, Erd C, Greeley R, Pappalardo B, the Joint Science Definition Team (2009) The Jupiter Ganymede Orbiter as part of the ESA/NASA Europa Jupiter System Mission (EJSM). EPSC Abstracts 4, EPSC2009-784, European Planetary Science CongressGoogle Scholar
  17. Grundy WM, Buratti BJ, Cheng AF, Emery JP, Lunsford A, McKinnon WB, Moore JM, Newman SF, Olkin CB, Reuter DC, Schenk PM, Spencer JR, Stern SA, Throop HB, Weaver HA (2007) New horizons mapping of Europa and Ganymede. Science 318:234–236ADSCrossRefGoogle Scholar
  18. Horvath J, Carsey F, Cutts J, Jones J, Johnson E, Landry B, Lane L, Lynch G, Chela-Flores J, Jeng T-W, Bradley A (1997) Searching for ice and ocean biogenic activity on Europa and Earth. In: Hoover RB (ed) Instruments, methods and missions for investigation of extraterrestrial microorganisms. Proceedings of SPIE 3111, pp 490–500.∼chelaf/searching_for_ice.html
  19. Kiyosu Y, Krouse HR (1990) The role of organic acid in the abiogenic reduction of sulfate and the sulfur isotope effect. Geochem J 24:21–27CrossRefGoogle Scholar
  20. Lovley DR, Phillips EJP, Lonergan DJ, Widman PK (1995) Fe(III) and S (0) reduction by Paleobacter carbinolicus. Appl Environ Microbiol 61:2132–2138Google Scholar
  21. McCord TB, Carlson RW, Smythe WD, Hansen GB, Clark RN, Hibbitts CA, Fanale FPJ, Granahan C, Segura M, Matson DL, Johnson TV, Martin PD (1997) Organics and other molecules in the surfaces of Callisto and Ganymede. Science 278:271–275ADSCrossRefGoogle Scholar
  22. McCord TB, Hansen GB, Matson DL, Johnson TV, Crowley JK, Fanale FP, Carlson RW, Smythe WD, Martin PD, Hibbitts CA, Granahan JC, Ocampo A, the NIMS team (1999) Hydrated salt minerals on Europa’s surface from the Galileo near-infrared mapping spectrometer (NIMS) investigation. J Geophys Res 104:11827–11851ADSCrossRefGoogle Scholar
  23. Mikucki JA, Pearson A, Johnson DT, Turchyn AV, Farquhar J, Schrag DP, Anbar AD, Priscu JC, Lee PA (2009) A contemporary microbially maintained subglacial ferrous “ocean”. Science 324:397–400ADSCrossRefGoogle Scholar
  24. Mikucki J, Lyons B, Hawes I, Lanoil BD, Doran PT (2010) Saline lakes and ponds in the McMurdo Dry Valleys: ecological analogs to Martian paleolake environments. In: Doran PT, Lyons WB, McKnight DM (eds) Life in Antarctic deserts and other cold dry environments: astrobiological analogs. Cambridge University Press, Cambridge/New York, pp 160–194CrossRefGoogle Scholar
  25. Parker BC, Wharton RA (1985) Physiological ecology of blue-green algal mats (modern stromatolites) in Antarctic oasis lakes. Arch Hydrobiol Suppl 71:331–348Google Scholar
  26. Parker BC, Simmons GM Jr, Seaburg KG, Wharton RA Jr (1980) Ecological comparisons of oasis lakes and soils. Antarct J U S 15:167–170Google Scholar
  27. Parker BC, Simmons GM Jr, Gordon Love F, Wharton RA Jr, Seaburg KG (1981) Modern stromatolites in Antarctic Dry Valley lakes. Bioscience 31:656–661CrossRefGoogle Scholar
  28. Parker BC, Simmons GM Jr, Wharton RA Jr, Seaburg KG, Gordon Love F (1982) Removal of organic and inorganic matter from Antarctic lakes by aerial escape of blue green algal mats. J Phycol 18:72–78CrossRefGoogle Scholar
  29. Priscu JC, Adams EE, Lyons WB, Voytek MA, Mogk DW, Brown RL, McKay CP, Takacs CD, Welch KA, Wolf CF, Krishtein JD, Avci R (1999) Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. Science 286:2141–2144CrossRefGoogle Scholar
  30. Priscu JC, Bell RE, Bulat SA, Ellis-Evans CJ, Kennicutt MC, Lukin VV, Petit J-R, Powell RD, Siegert MJ, Tabacco I (2003) An international plan for Antarctica subglacial lake exploration. Polar Geogr 27:69–83CrossRefGoogle Scholar
  31. Shen Y, Buick R (2004) The antiquity of microbial sulfate reduction. Earth Sci Rev 64:243–272ADSCrossRefGoogle Scholar
  32. Siegert MJ, Ellis-Evans JC, Tranter M, Mayer C, Petit JR, Salamatin A, Priscu JC (2001) Physical, chemical and biological processes in Lake Vostok and other Antarctic subglacial lakes. Nature 414:603–609ADSCrossRefGoogle Scholar
  33. Siegert MJ, Tranter M, Ellis-Evans JC, Priscu JC, Lyons WB (2003) The hydrochemistry of Lake Vostok and the potential for life in Antarctic subglacial lakes. Hydrol Processes 17:795–814ADSCrossRefGoogle Scholar
  34. Siegert MJ, Carter S, Tabacco I, Popov S, Blankenship DD (2005) A revised inventory of Antarctic subglacial lakes. Antarct Sci 17:453–460CrossRefGoogle Scholar
  35. Simmons GM Jr, Parker BC, Allnut FTC, Brown D, Cathey D, Seaburg KG (1979) Ecological comparison of oasis lakes and soils. Antarct J U S 14:181–183Google Scholar
  36. Smith BE, Fricker HA, Joughin IR, Tulaczyk S (2009) An inventory of active subglacial lakes in Antarctica detected by ICESat (2003–2008). J Glaciol 55:573–595CrossRefGoogle Scholar
  37. Weiss P, Yung KL, Ng TC, Komle N, Kargl G, Kaufmann E (2008) Study of a melting drill head for the exploration of subsurface planetary ice layers. Planet Space Sci 56:1280–1292ADSCrossRefGoogle Scholar
  38. Weiss P, Yung KL, Koemle N, Ko SM, Kaufmann E, Kargl G (2011) Thermal drill sampling system onboard high-velocity impactors for exploring the subsurface of Europa. Adv Space Res 48(4):743–754Google Scholar
  39. Wharton RA Jr, Parker BC, Simmons GM Jr (1983) Distribution, species composition and morphology of algal mats in Antarctic Dry Valley lakes. Phycologia 22:355–365CrossRefGoogle Scholar
  40. Wortmann UG, Bernasconi SM, Bottcher ME (2001) Hypersulfidic deep biosphere indicates extreme sulfur isotope fractionation during single-step microbial sulfate reduction. Geology 29:647–650ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Suman Dudeja
    • 1
  • Aranya B. Bhattacherjee
    • 2
  • Julian Chela-Flores
    • 3
    • 4
  1. 1.Department of Chemistry, ARSD CollegeUniversity of DelhiNew DelhiIndia
  2. 2.Department of Physics, ARSD CollegeUniversity of DelhiNew DelhiIndia
  3. 3.The Abdus Salam International Centre for Theoretical PhysicsTriesteItaly
  4. 4.Fundación Instituto de Estudios Avanzados–IDEACaracasRepublica Bolivariana de Venezuela

Personalised recommendations