Advertisement

Can the Evolution of Multicellularity Be Anticipated in the Exploration of the Solar System?

  • Harold P. de Vladar
  • Julian Chela-Flores
Chapter
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 24)

Abstract

Understanding the evolution of development in multicellular organisms is one of the most challenging problems in biology, along with the still-to-be understood origin of life on Earth (and in the universe), the central core of the modern science of astrobiology. One giant step in this direction has been taken by John Tyler Bonner (Bonner, 2001). He focused on a significant transition in the evolution of the Earth biota (Maynard Smith and Szathmáry, 1995, Ch. 12), when development was not complicated by the billion years that followed the late Proterozoic, at a time when the Earth had witnessed over two billion years of microorganism evolution. Some progress is possible with the development of a model for the origin of multicellular organisms based on the idea that it had a selective advantage to be multicellular; as in poor environments, micro­organisms could use each other as nourishment to survive (Kerszberg and Wolpert, 1998).

Keywords

Solar System Multicellular Organism Inheritance System Silicate Core Delta Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bland MT et al (2009) The orbital–thermal evolution and global expansion of Ganymede. Icarus 200:207–221ADSCrossRefGoogle Scholar
  2. Bonner JT (2001) First signals: the evolution of multicellular development. Princeton University Press, PrincetonGoogle Scholar
  3. Burch CL, Chao L (1999) Evolution by small steps and rugged landscapes in the RNA virus φ6. Genetics 151:921–927Google Scholar
  4. Buss L (1987) The evolution of individuality. Princeton University Press, PrincetonGoogle Scholar
  5. Carlson RW et al (1999) Sulfuric acid on Europa and the radiolytic sulfur cycle. Science 286:97–99ADSCrossRefGoogle Scholar
  6. Chela-Flores J (2006) The sulphur dilemma: are there biosignatures on Europa’s icy and patchy surface? Int J Astrobiol 5:17–22CrossRefGoogle Scholar
  7. Chela-Flores J (2010) Instrumentation for the search of habitable ecosystems in the future exploration of Europa and Ganymede. Int J Astrobiol 9:101–108CrossRefGoogle Scholar
  8. Chyba CF, Hand KP (2005) Astrobiology: the study of the living universe. Ann Rev Astronom Astrophys 43:31–74ADSCrossRefGoogle Scholar
  9. Cloud P (1986) Reflections on the beginnings of metazoan evolution. Precambrian Res 31:405–408CrossRefGoogle Scholar
  10. Dalton JB, Rakesh M, Kagawa HK, Chan SL, Jamieson CS (2003) Near-infrared detection of potential evidence for microscopic organisms on Europa. Astrobiology 3:505–529ADSCrossRefGoogle Scholar
  11. Dick SJ, Strick JE (2004) The living universe: NASA and the development of astrobiology. Rutgers University Press, New BrunswickGoogle Scholar
  12. Farquhar J, Wing BA (2005) Sulfur multiple isotopes of the Moon: 33S and 36S abundances relative to Canon Diablo Troilite. Lunar Planet Sci 36:2380ADSGoogle Scholar
  13. Fitch TW (2010) The evolution of language. Cambridge University Press, Cambridge/New YorkCrossRefGoogle Scholar
  14. Fridlund M, Eiroa C, Henning T, Herbst T, Lammer H, Leger A, Liseau R, Paresce F, Penny A, Quirrenbach A, Rottgering H, Selsis F, White GJ, Absil O, Defrere D, Hanot C, Stam D, Schneider J, Tinetti G, Karlsson A, Gondoin P, den Hartog R, D’Arcio L, Stankov A-M, Kilter M, Erd C, Beichman C, Coulter D, Danchi W, Devirian M, Johnston KJ, Lawson P, Lay OP, Lunine J, Kaltenegger L (2010) The search for worlds like our own. Astrobiology 10:5–17ADSCrossRefGoogle Scholar
  15. Ganti T, Horvath A, Berczi S et al (2003) Dark dune spots: possible biomarkers on Mars? Orig Life Evol Biosph 33:515–557ADSCrossRefGoogle Scholar
  16. Glaessner MF (1983) The emergence of metazoa in the early history of life. Precambrian Res 20:427–441CrossRefGoogle Scholar
  17. Gowen R et al (2009) Looking for astrobiological signatures with penetrators on Europa. In: Physical and engineering sciences exploratory workshops: biosignatures on exoplanets: the identity of life, Mulhouse, France. http://www.ictp.it/∼chelaf/ESFsummary.pdf
  18. Greenberg R (2005) Europa the ocean moon: search for an alien biosphere. Springer, HeidelbergGoogle Scholar
  19. Gribaldo S, Brochier-Armanet C (2006) The origin and evolution of Archaea: a state of the art. Phil Trans R Soc Lond B 361:1007–1022CrossRefGoogle Scholar
  20. Grosberg RK, Strathmann RR (2007) The evolution of multicellularity: a minor major transition? Annu Rev Ecol Syst 38:621–654CrossRefGoogle Scholar
  21. Hoenigsberg HF, Tijaro MH, Sanabria C (2008) From unicellularity to multicellularity – molecular speculations about early animal evolution. Genet Mol Res 7:50–59CrossRefGoogle Scholar
  22. Horvath A, Kereszturi A, Berczi S et al (2009) Analysis of dark albedo features on a southern polar dune field of Mars. Astrobiology 9:90–103ADSCrossRefGoogle Scholar
  23. Kaplan IR (1975) Stable isotopes as a guide to biogeochemical processes. Proc R Soc Lond B 189:183–211ADSCrossRefGoogle Scholar
  24. Kereszturi A, Mohlmann D, Berczi Sz, Ganti T, Kuti A, Sik A, Horvath A (2009) Recent rheologic processes on dark polar dunes of Mars: driven by interfacial water? Icarus 201:492–503ADSCrossRefGoogle Scholar
  25. Kerszberg M, Wolpert L (1998) The origins of metazoa and the egg: a role for cell death. J Theoret Biol 193:535–537CrossRefGoogle Scholar
  26. Kiyosu Y, Krouse HR (1990) The role of organic acid in the abiogenic reduction of sulfate and the sulfur isotope effect. Geochem J 24:21–27CrossRefGoogle Scholar
  27. Kwok S (2009) Organic matter in space: from star dust to the Solar System. Astrophys Space Sci 319:5–21ADSCrossRefGoogle Scholar
  28. Labeyrie A (1996) Resolved imaging of extra-solar planets with future 10–100 km optical interferometric arrays. Astron Astrophys Suppl 118:517–524ADSCrossRefGoogle Scholar
  29. Maynard Smith J, Szathmáry E (1995) The major transitions in evolution. Oxford University Press, OxfordGoogle Scholar
  30. McCord B, Carlson RW, Smythe WD, Hansen GB, Clark RN, Hibbitts CA, Fanale FP, Granahan JC, Segura M, Matson DL, Johnson TV, Martin PD (1997) Organics and other molecules in the surfaces of Callisto and Ganymede. Science 278:271–275ADSCrossRefGoogle Scholar
  31. McCord TB, Hansen GB, Matson DL, Johnson TV, Crowley JK, Fanale FP, Carlson RW, Smythe WD, Martin PD, Hibbitts CA, Granahan JC, Ocampo A, the NIMS team (1999) Hydrated salt minerals on Europa’s surface from the Galileo near-infrared mapping spectrometer (NIMS) investigation. J Geophys Res 104:11827–11851ADSCrossRefGoogle Scholar
  32. McKay DS, Gibson EK, ThomasKeprta KL, Vali H, Romanek CS, Clemett SJ, Chillier XDF, Maechling CR, Zare RN (1996) Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science 273:924–930ADSCrossRefGoogle Scholar
  33. Michod RE (2007) Evolution of individuality during the transition from unicellular to multicellular life. Proc Natl Acad Sci USA 104:8613–8618ADSCrossRefGoogle Scholar
  34. Michod RE, Viossat Y, Solari CA, Hurand M, Nedelcu AM (2006) Life-history evolution and the origin of multicellularity. J Theoret Biol 239:257–272MathSciNetCrossRefGoogle Scholar
  35. Morozkina EV, Slutskaya ES, Fedorova TV et al (2010) Extremophilic microorganisms: biochemical adaptation and biotechnological application. Appl Biochem Microbiol 46:1–14CrossRefGoogle Scholar
  36. Morrison P, Billingham J, Wolfe J (1977) The search for extraterrestrial intelligence-SETI (NASA SP 419). NASA/Government Printing Office, Washington, DC, p 844Google Scholar
  37. Novelli M, Fierro MT, Lisa F et al (1996) Skin infiltrating lymphocyte flow cytometric immuno­phenotyping automated mechanical biopsy disaggregation and CD45 gating. J Invest Dermatol 107:501aGoogle Scholar
  38. Perryman MAC (2000) Extra-solar planets. Rep Progr Phys 63:1209–1272ADSCrossRefGoogle Scholar
  39. Pfeiffer T, Bonhoeffer S (2003) An evolutionary scenario for the transition to undifferentiated multicellularity. Proc Natl Acad Sci USA 100:1095–1098ADSCrossRefGoogle Scholar
  40. Pfeiffer T, Schuster S, Bonhoeffer S (2006) Cooperation and competition in the evolution of ATO-producing pathways. Science 292:504–507ADSCrossRefGoogle Scholar
  41. Pikuta EV, Hoover RB, Tang J (2007) Microbial extremophiles at the limits of life. Crit Rev Microbiol 33:183–209CrossRefGoogle Scholar
  42. Rompel A, Cinco RM, Latimer MJ, McDermott AE, Guiles RD, Quintanilha A, Krauss RM, Sauer K, Yachandra VK, Klein MP (1998) Sulfur K-edge x-ray absorption spectroscopy: a spectroscopic tool to examine the redox state of S-containing metabolites in vivo. Proc Natl Acad Sci USA 95:6122–6127ADSCrossRefGoogle Scholar
  43. Santos NC (2008) Extra-solar planets: detection methods and results. New Astron Rev 52:154–166ADSCrossRefGoogle Scholar
  44. Schneider J, Léger A, Fridlund M, White GJ, Eiroa C, Henning T, Herbst T, Lammer H, Liseau R, Paresce F, Penny A, Quirrenbach A, Röttgering H, Selsis F, Beichman C, Danchi W, Kaltenegger L, Lunine J, Stam D, Tinetti G (2010) The far future of exoplanet direct characterization. Astrobiology 10:121–126ADSCrossRefGoogle Scholar
  45. Schuster P (2010) Origins of life: concepts, data, and debates. Complexity 15:7–10Google Scholar
  46. Sebé-Pedrós A, Roger AJ, Lang FB, King N, Ruiz-Trillo I (2010) Ancient origin of the integrin-mediated adhesion and signaling machinery. Proc Natl Acad Sci USA 107(22):10142–10147ADSCrossRefGoogle Scholar
  47. Segre D, Ben-Eli D, Deamer DW, Lancet D (2001) The lipid world. Orig Life Evol Biosph 31:119–145ADSCrossRefGoogle Scholar
  48. Shen Y, Buick R (2004) The antiquity of microbial sulfate reduction. Earth Sci Rev 64:243–272ADSCrossRefGoogle Scholar
  49. Shenhav B, Segre D, Lancet D (2003) Mesobiotic emergence: molecular and ensemble complexity in early evolution. Adv Complex Syst 6:15–35CrossRefGoogle Scholar
  50. Shklovskii IS, Sagan C (1966) Intelligent life in the universe. Holden-Dale, New YorkGoogle Scholar
  51. Singh NP (1998) A rapid method for the preparation of single-cell suspensions from solid tissues. Cytometry 31:229–232CrossRefGoogle Scholar
  52. Smith PH et al (2009) H2O at the Phoenix landing site. Science 325:58–61ADSGoogle Scholar
  53. Solari CA, Kessler JO, Michod RE (2006) A hydrodynamics approach to the evolution of multi­cellularity: flagellar motility and germ-soma differentiation in volvocalean green algae. Am Nat 167:537–554CrossRefGoogle Scholar
  54. Szathmáry E (1999) Chemes, genes, memes: a revised classification of replicators. Lect Math Life Sci 26:1–10Google Scholar
  55. Whiteway JA et al (2009) Mars water-ice clouds and precipitation. Science 2325:68–70ADSGoogle Scholar
  56. Wortmann UG et al (2001) Hypersulfidic deep biosphere indicates extreme sulfur isotope fractionation during single-step microbial sulfate reduction. Geology 29:647–650ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.IST–Austria (Institute of Science and Technology Austria)KlosterneuburgAustria
  2. 2.Fundación Instituto de Estudios Avanzados–IDEACaracasRepública Bolivariana de Venezuela
  3. 3.The Abdus Salam ICTPTriesteItaly

Personalised recommendations