Advertisement

Astrobiology of Titan

  • Michae Simakov
Chapter
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 24)

Abstract

Mars, Europa, and Titan—these solar system bodies have a great exobiological significance. Here, we will focus on Titan, the largest satellite of Saturn, which has a dense atmosphere composed primarily of N2with about 5 % CH4and a large number of minor constituents such as carbon monoxide, carbon dioxide, ethane, ethylene, acetylene, cyanoacetylene, hydrogen cyanide, benzene, and many others. An internal water ocean could exist below the surface crust of water ice. A 100-km-deep ocean considered in the recent model is buried below several tens of kilometers of ice (Lorenz et al., 2008). The temperature of such ocean corresponds to the temperature of water at its maximum density (4 °C). The main requirements needed for exobiology are liquid water which exists within long geological period, complex organic and inorganic chemistry, and energy sources for support of biological processes. And all of these are on Titan.

Keywords

Hydrothermal Vent Impact Crater Hydrogen Cyanide Anaerobic Oxidation Meteoritic Impact 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Atreya SK, Donahue TM, Kuhn WR (1978) Evolution of a nitrogen atmosphere on Titan. Science 201:611–613ADSCrossRefGoogle Scholar
  2. Berndt ME, Allen DE, Seyfried WE Jr (1996) Reduction of CO2during serpentinization of olivine at 300 degrees C and 500 bar. Geology 24:351–354ADSCrossRefGoogle Scholar
  3. Bischoff JL, Rosenbauer RJ (1989) Salinity variations in submarine hydrothermal systems by layered double-diffusive convection. J Geol 97:613–623ADSCrossRefGoogle Scholar
  4. Blank JG, Miller GH, Ahrens MJ, Winans RE (2001) Experimental shock chemistry of aqueous amino acid solutions and the cometary delivery of prebiotic compounds. Orig Life Evol Biosph 31:15–51ADSCrossRefGoogle Scholar
  5. Blochl E, Rachel R, Burggraf S, Hafenbradl D, Jannasch HW, Stetter KO (1997) Pyrolobus fumarii, gen. and sp. nov., represents a novel group of Archaea, extending the upper temperature limit for life to 113 degrees C. Extremophiles 1:14–21CrossRefGoogle Scholar
  6. Boetius A et al (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626ADSCrossRefGoogle Scholar
  7. Borucki JG, Khare BN (2001) Synthesis of organic molecules in the fracture zone of meteorite impacts on Europa. 1st workshop of the Europa Focus Group, 2–3, abstractGoogle Scholar
  8. Boston PJ, Ivanov MV, McKay CP (1992) On the possibility of chemosynthetic ecosystems in subsurface on Mars. Icarus 95:300–308ADSCrossRefGoogle Scholar
  9. Bowman JP, McCammon SA, Skerratt JH (1997) Methylosphaera hansoniigen.nov., sp.nov., a psychro­philic, group I methanotroph from Antarctic marine-salinity, meromictic lakes. Microbiology 143:1451–1459CrossRefGoogle Scholar
  10. Carpentier W, De Smet L, Van Beeumen J, Brige A (2005) Respiration and growth of Shewanella oneidensisMR-1 using vanadate as the sole electron acceptor. J Bacteriol 187:3293–3301CrossRefGoogle Scholar
  11. Clark RN, Curchin JM, Barnes JW et al (2010) Detection and mapping of hydrocarbon deposits on Titan. J Geophys Res. doi: 10.1029/2009JE003369
  12. Coustenis A (2005) Formation and evolution of Titan’s atmosphere. Space Sci Rev 116:171–184ADSCrossRefGoogle Scholar
  13. Drobyshevski EM (2002) Galilean satellites as sites for incipient life, and the Earth as its shelter. In: Simakov MB, Pavlov AK (eds) Astrobiology in Russia, proceedings of international workshop, St. Petersburg, Russia, 25–28 Mar 2002, pp 47–62Google Scholar
  14. Engel S, Lunine JI, Norton DL (1994) Silicate interactions with ammonia–water fluids on early Titan. J Geophys Res 99:3745–3752ADSCrossRefGoogle Scholar
  15. Ferris JP, Joshi PC, Edelson EH, Lawless JG (1978) HCN: a plausible source of purines, pyrimidines and amino acids on the primitive earth. J Mol Evol 11:293–311CrossRefGoogle Scholar
  16. Fortes AD, Grindrod PM, Trickett SK, Vocadlo L (2007) Ammonium sulfate on Titan: Possible origin and role in cryovolcanism. Icarus 188:139–153Google Scholar
  17. Freund F, Dickinson JT, Cash M (2002) Hydrogen in rocks: an energy source for deep microbial communities. Astrobiology 2:83–92ADSCrossRefGoogle Scholar
  18. Gaidos EJ, Nealson KH, Kirschvink JL (1999) Life in ice-covered oceans. Science 284:1631–1633CrossRefGoogle Scholar
  19. Grasset O, Pargamin J (2005) The ammonia–water system at high pressures: implications for the methane of Titan. Planet Space Sci 53:371–384ADSCrossRefGoogle Scholar
  20. Greenberg R, Geissler P, Tufts BR, Hoppa GV (2000) Habitability of Europa’s crust: the role of tidal-tectonic processes. J Geophys Res 105:17551–17562ADSCrossRefGoogle Scholar
  21. Israel G, Szopa C, Raulin F et al (2005) Complex organic matter in Titan’s atmospheric aerosols from in situ pyrolysis and analysis. Nature 438:796–799ADSCrossRefGoogle Scholar
  22. Jakosky BM, Shock EL (1998) The biological potential of Mars, the early Earth, and Europa. J Geophys Res 103:19359–19364ADSCrossRefGoogle Scholar
  23. Jaumann R, Kirk RL, Lorenz RD et al (2009) Geology and surface processes on Titan. In: Brown RH, Lebreton J-P, Hunter Waite J (eds) Titan from Cassini–Huygens. Springer, New York, pp 75–140CrossRefGoogle Scholar
  24. Khare BN, Sagan C, Ogino H, Nagy B, Er C, Schram KH, Arakawa ET (1986) Amino acids derived from Titan tholins. Icarus 68:176–184ADSCrossRefGoogle Scholar
  25. Lammer H et al (2001) Lightning activity on Titan: can Cassini detect it? Planet Space Sci 49:561–574ADSCrossRefGoogle Scholar
  26. Lerner NR, Peterson E, Chang S (1993) The Strecker synthesis as a source of amino acids in carbonaceous chondrites: Deuterium retention during synthesis. Geochim Cosmochim Acta 57:4713–4723ADSCrossRefGoogle Scholar
  27. Levy M, Miller SL, Brinton K, Bada JL (2000) Prebiotic synthesis of adenine and amino acids under Europa–like conditions. Icarus 145:609–613ADSCrossRefGoogle Scholar
  28. Lorenz RD, Lunine JI (1996) Erosion on Titan: past and present. Icarus 122:79–91ADSCrossRefGoogle Scholar
  29. Lorenz RD, Lunine JI, McKay CP (2001) Geologic setting for aqueous organic synthesis on Titan revisited. Enantiomer 6:83–96Google Scholar
  30. Lorenz RD, Stiles BW, Kirk RL, Allison MD, del Marmo PP, Iess L, Lunine JI, Ostro SJ, Hensley S (2008) Titan’s rotation reveals an internal ocean and changing zonal winds. Science 319:1649–1651ADSCrossRefGoogle Scholar
  31. Lunine JI, Lorenz RD, Hartmann WK (1998) Some speculations on Titans past, present and future. Planet Space Sci 46:1099–1107ADSCrossRefGoogle Scholar
  32. McCord TB et al (1999) Hydrated salt minerals on Europa’s surface from the Galileo near-infrared mapping spectrometer (NIMS) investigation. J Geophys Res 104:11827–11851ADSCrossRefGoogle Scholar
  33. McCord TB, Hansen GB, Hibbitts CA (2001) Hydrated salt minerals on Ganymede’s surface: evidence of an ocean below. Science 292:1523–1525ADSCrossRefGoogle Scholar
  34. McKay CP, Smith HD (2005) Possibilities for methanogenic life in liquid methane on the surface of Titan. Icarus 178:274–276ADSCrossRefGoogle Scholar
  35. McKay CP, Scattergood TW, Pollack JB, Borucki WJ, Van Ghysegahm HT (1988) High temperature shock formation of N2and organics on primordial Titan. Nature 332:520–522ADSCrossRefGoogle Scholar
  36. Melosh HJ, Ekholm AG, Showman AP, Lorenz RD (2004) The temperature of Europa’s subsurface water ocean. Icarus 168:498–502ADSCrossRefGoogle Scholar
  37. Mitri G, Showman AP (2008) Thermal convection in ice-I shells of Titan and Enceladus. Icarus 193:387–396ADSCrossRefGoogle Scholar
  38. Mousis O, Lunine JI, Thomas C, Pasek M, Marboeuf U, Alibert Y, Ballenegger V, Cordier D, Ellinger Y, Pauzat F, Picaud S (2009) Clathration of volatiles in the solar nebula and implications for the origin of Titan’s atmosphere. J Astrophys 691:1780–1786ADSCrossRefGoogle Scholar
  39. Neish CD, Somogyi A, Lunine JI, Smith MA (2009) Low temperature hydrolysis of laboratory tholins in ammonia-water solutions: Implications for prebiotic chemistry on Titan. Icarus 201:412–421ADSCrossRefGoogle Scholar
  40. Neish CD, Somogyi A, Smith MA (2010) Titan’s Primordial soup: formation of amino acids via low–temperature hydrolysis of tholins. Astrobiology 10:337–347ADSCrossRefGoogle Scholar
  41. Nelson RM et al (2009) Photometric changes on Saturn’s Titan: evidence for active cryovolcanism. Geophys Res Lett 36:L4202. doi: 10.1029/2008GL036206 CrossRefGoogle Scholar
  42. Niemann HB et al (2005) The abundances of constituents of Titan’s atmosphere from the GCMS instrument on the Huygens probe. Nature 438:779–784ADSCrossRefGoogle Scholar
  43. Nimmo F (2004) Stresses generated in cooling viscoelastic ice shells: application to Europa. J Geophys Res 109:E12001ADSCrossRefGoogle Scholar
  44. O’Brien DP, Lorenz RD, Lunine JI (2005) Numerical calculations of the longevity of impact oases on Titan. Icarus 173:243–153ADSCrossRefGoogle Scholar
  45. Owen TC (2000) The origin of Titan’s atmosphere. Planet Space Sci 48:747–752ADSCrossRefGoogle Scholar
  46. Pappalardo RT, Head JW, Greeley R (1999) The hidden ocean of Europa. Sci Am 281:54–63CrossRefGoogle Scholar
  47. Ramirez SI, Navarro–Gonzalez R, Coll P, Raulin F (2001) Possible contribution of different energy sources to the production of organics in Titan’s atmosphere. Adv Space Res 27:261–270ADSCrossRefGoogle Scholar
  48. Rivkina E, Gilichinsky D, Wagener S, Tiedje J, McGrath J (1998) Biogeochemical activity of anaerobic microorganisms from buried permafrost sediments. Geomicrobiol J 15:187–193CrossRefGoogle Scholar
  49. Scheller S, Goenrich M, Boecher R, Thauer RK, Jaun B (2010) The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane. Nature 465:606–609ADSCrossRefGoogle Scholar
  50. Schmidt J, Brilliantov N, Spahn F, Kempf S (2008) Slow dust in Enceladus’ plume from condensation and wall collisions in tiger stripe fractures. Nature 451:685–688ADSCrossRefGoogle Scholar
  51. Schulze-Makuch D, Grinspoon DH (2005) Biologically enhanced energy and carbon cycling on Titan? Astrobiology 5:560–564ADSCrossRefGoogle Scholar
  52. Seewald J, Zolotov MY, McCollom T (2006) Experimental investigation of carbon speciation under hydrothermal conditions. Geochim Cosmochim Acta 70:446–460ADSCrossRefGoogle Scholar
  53. Shock EL, Schulte MD (1998) Organic synthesis during fluid mixing in hydrothermal systems. J Geophys Res 103:28513–28527ADSCrossRefGoogle Scholar
  54. Simakov MB (2000) Dinitrogen as a possible biomarker for exobiology: the case of Titan. In: Lemarchand GA, Meech KJ (eds) Bioastronomy’99: a new era in bioastronomy. Sheridan Books, Chelsea, Michigan, USA pp 333–338Google Scholar
  55. Simakov MB (2004) Possible biogeochemical cycles on Titan. In: Seckbach J (ed) Origins: genesis evolution and diversity of life (Cellular origin, life in extreme habitats and astrobiology). Kluwer, Dordrecht, Netherlands, pp 645–665Google Scholar
  56. Sokolova TG et al (2002) Anaerobic CO–oxidizing, H2–producing prokaryotes from volcanic habitats. In: Simakov MB, Pavlov AK (eds) Astrobiology in Russia, proceedings of international workshop, St. Petersburg, Russia, 25–28 Mar 2002, pp 156–163Google Scholar
  57. Sotin C, Jaumann R, Buratti BJ et al (2005) Release of volatiles from a possible cryovolcano from near-infrared imaging of Titan. Nature 435:786–789ADSCrossRefGoogle Scholar
  58. Spohn T, Schubert G (2003) Oceans in the icy Galilean satellites of Jupiter? Icarus 161:456–467ADSCrossRefGoogle Scholar
  59. Stetter KO (2001) Hyperthermophilic microorganisms. In: Horneck G (ed) Astrobiology. The quest for the conditions of life. Springer, Berlin, Germany, pp 169–184Google Scholar
  60. Strobel DF (2010) Molecular hydrogen in Titan’s atmosphere: implications of the measured tropospheric and thermospheric mole fractions. Icarus 208:878–886ADSCrossRefGoogle Scholar
  61. Thompson RW, Sagan C (1992) Organic chemistry on Titan — surface interactions. In: Proceedings of the symposium on Titan, Toulouse, Sept 1991, ESA SP–338, pp 167–182Google Scholar
  62. Tobie G, Lunine JI, Sotin C (2006) Episodic outgassing as the origin of atmospheric methane on Titan. Nature 440:61–64ADSCrossRefGoogle Scholar
  63. Vuitton V, Yelle RV, McEwan MJ (2007) Ion chemistry and N–containing molecules in Titan’s upper atmosphere. Icarus 191:722–742ADSCrossRefGoogle Scholar
  64. Waite JH, Niemann H, Yelle RV, Kasprzak WT, Cravens TE, Luhmann JG, McNutt RF, Ip W, Gell D, De La Haye V, Muller-Wordag I, Magee B, Borggren N, Ledvina S, Fletcher G, Walter E, Miller R, Scherer S, Thorpe R, Xu J, Block B, Arnett K (2005) Ion neutral mass spectrometer results from the first flyby of Titan. Science 308:982–986ADSCrossRefGoogle Scholar
  65. Wall SD, Lopes RM, Stofan ER et al (2009) Cassini RADAR images at Hotei Arcus and western Xanadu, Titan: evidence for geologically recent cryovolcanic activity. Geophys Res Lett 36. doi: 10.1029/2008GL036415
  66. Wood CA, Lorenz R, Kirk R et al (2010) Impact craters on Titan. Icarus 206:334–344ADSCrossRefGoogle Scholar
  67. Yung YL, Allen MA, Pinto JP (1984) Photochemistry of the atmosphere of Titan: comparison between model and observations. Astrophys J Suppl Ser 55:465–506ADSCrossRefGoogle Scholar
  68. Zolotov MY, Shock EL (2000) A thermodynamic assessment of the potential synthesis of condensed hydrocarbons during cooling and dilution of volcanic gases. J Geophys Res 105:539–560ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Institute of CytologyRussian Academy of SciencesPetersburgRussia

Personalised recommendations