Skip to main content

Astrobiology of Titan

  • Chapter
  • First Online:
Life on Earth and other Planetary Bodies

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 24))

  • 1851 Accesses

Abstract

Mars, Europa, and Titan—these solar system bodies have a great exobiological significance. Here, we will focus on Titan, the largest satellite of Saturn, which has a dense atmosphere composed primarily of N2with about 5 % CH4and a large number of minor constituents such as carbon monoxide, carbon dioxide, ethane, ethylene, acetylene, cyanoacetylene, hydrogen cyanide, benzene, and many others. An internal water ocean could exist below the surface crust of water ice. A 100-km-deep ocean considered in the recent model is buried below several tens of kilometers of ice (Lorenz et al., 2008). The temperature of such ocean corresponds to the temperature of water at its maximum density (4 °C). The main requirements needed for exobiology are liquid water which exists within long geological period, complex organic and inorganic chemistry, and energy sources for support of biological processes. And all of these are on Titan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atreya SK, Donahue TM, Kuhn WR (1978) Evolution of a nitrogen atmosphere on Titan. Science 201:611–613

    Article  ADS  Google Scholar 

  • Berndt ME, Allen DE, Seyfried WE Jr (1996) Reduction of CO2during serpentinization of olivine at 300 degrees C and 500 bar. Geology 24:351–354

    Article  ADS  Google Scholar 

  • Bischoff JL, Rosenbauer RJ (1989) Salinity variations in submarine hydrothermal systems by layered double-diffusive convection. J Geol 97:613–623

    Article  ADS  Google Scholar 

  • Blank JG, Miller GH, Ahrens MJ, Winans RE (2001) Experimental shock chemistry of aqueous amino acid solutions and the cometary delivery of prebiotic compounds. Orig Life Evol Biosph 31:15–51

    Article  ADS  Google Scholar 

  • Blochl E, Rachel R, Burggraf S, Hafenbradl D, Jannasch HW, Stetter KO (1997) Pyrolobus fumarii, gen. and sp. nov., represents a novel group of Archaea, extending the upper temperature limit for life to 113 degrees C. Extremophiles 1:14–21

    Article  Google Scholar 

  • Boetius A et al (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    Article  ADS  Google Scholar 

  • Borucki JG, Khare BN (2001) Synthesis of organic molecules in the fracture zone of meteorite impacts on Europa. 1st workshop of the Europa Focus Group, 2–3, abstract

    Google Scholar 

  • Boston PJ, Ivanov MV, McKay CP (1992) On the possibility of chemosynthetic ecosystems in subsurface on Mars. Icarus 95:300–308

    Article  ADS  Google Scholar 

  • Bowman JP, McCammon SA, Skerratt JH (1997) Methylosphaera hansoniigen.nov., sp.nov., a psychro­philic, group I methanotroph from Antarctic marine-salinity, meromictic lakes. Microbiology 143:1451–1459

    Article  Google Scholar 

  • Carpentier W, De Smet L, Van Beeumen J, Brige A (2005) Respiration and growth of Shewanella oneidensisMR-1 using vanadate as the sole electron acceptor. J Bacteriol 187:3293–3301

    Article  Google Scholar 

  • Clark RN, Curchin JM, Barnes JW et al (2010) Detection and mapping of hydrocarbon deposits on Titan. J Geophys Res. doi:10.1029/2009JE003369

  • Coustenis A (2005) Formation and evolution of Titan’s atmosphere. Space Sci Rev 116:171–184

    Article  ADS  Google Scholar 

  • Drobyshevski EM (2002) Galilean satellites as sites for incipient life, and the Earth as its shelter. In: Simakov MB, Pavlov AK (eds) Astrobiology in Russia, proceedings of international workshop, St. Petersburg, Russia, 25–28 Mar 2002, pp 47–62

    Google Scholar 

  • Engel S, Lunine JI, Norton DL (1994) Silicate interactions with ammonia–water fluids on early Titan. J Geophys Res 99:3745–3752

    Article  ADS  Google Scholar 

  • Ferris JP, Joshi PC, Edelson EH, Lawless JG (1978) HCN: a plausible source of purines, pyrimidines and amino acids on the primitive earth. J Mol Evol 11:293–311

    Article  Google Scholar 

  • Fortes AD, Grindrod PM, Trickett SK, Vocadlo L (2007) Ammonium sulfate on Titan: Possible origin and role in cryovolcanism. Icarus 188:139–153

    Google Scholar 

  • Freund F, Dickinson JT, Cash M (2002) Hydrogen in rocks: an energy source for deep microbial communities. Astrobiology 2:83–92

    Article  ADS  Google Scholar 

  • Gaidos EJ, Nealson KH, Kirschvink JL (1999) Life in ice-covered oceans. Science 284:1631–1633

    Article  Google Scholar 

  • Grasset O, Pargamin J (2005) The ammonia–water system at high pressures: implications for the methane of Titan. Planet Space Sci 53:371–384

    Article  ADS  Google Scholar 

  • Greenberg R, Geissler P, Tufts BR, Hoppa GV (2000) Habitability of Europa’s crust: the role of tidal-tectonic processes. J Geophys Res 105:17551–17562

    Article  ADS  Google Scholar 

  • Israel G, Szopa C, Raulin F et al (2005) Complex organic matter in Titan’s atmospheric aerosols from in situ pyrolysis and analysis. Nature 438:796–799

    Article  ADS  Google Scholar 

  • Jakosky BM, Shock EL (1998) The biological potential of Mars, the early Earth, and Europa. J Geophys Res 103:19359–19364

    Article  ADS  Google Scholar 

  • Jaumann R, Kirk RL, Lorenz RD et al (2009) Geology and surface processes on Titan. In: Brown RH, Lebreton J-P, Hunter Waite J (eds) Titan from Cassini–Huygens. Springer, New York, pp 75–140

    Chapter  Google Scholar 

  • Khare BN, Sagan C, Ogino H, Nagy B, Er C, Schram KH, Arakawa ET (1986) Amino acids derived from Titan tholins. Icarus 68:176–184

    Article  ADS  Google Scholar 

  • Lammer H et al (2001) Lightning activity on Titan: can Cassini detect it? Planet Space Sci 49:561–574

    Article  ADS  Google Scholar 

  • Lerner NR, Peterson E, Chang S (1993) The Strecker synthesis as a source of amino acids in carbonaceous chondrites: Deuterium retention during synthesis. Geochim Cosmochim Acta 57:4713–4723

    Article  ADS  Google Scholar 

  • Levy M, Miller SL, Brinton K, Bada JL (2000) Prebiotic synthesis of adenine and amino acids under Europa–like conditions. Icarus 145:609–613

    Article  ADS  Google Scholar 

  • Lorenz RD, Lunine JI (1996) Erosion on Titan: past and present. Icarus 122:79–91

    Article  ADS  Google Scholar 

  • Lorenz RD, Lunine JI, McKay CP (2001) Geologic setting for aqueous organic synthesis on Titan revisited. Enantiomer 6:83–96

    Google Scholar 

  • Lorenz RD, Stiles BW, Kirk RL, Allison MD, del Marmo PP, Iess L, Lunine JI, Ostro SJ, Hensley S (2008) Titan’s rotation reveals an internal ocean and changing zonal winds. Science 319:1649–1651

    Article  ADS  Google Scholar 

  • Lunine JI, Lorenz RD, Hartmann WK (1998) Some speculations on Titans past, present and future. Planet Space Sci 46:1099–1107

    Article  ADS  Google Scholar 

  • McCord TB et al (1999) Hydrated salt minerals on Europa’s surface from the Galileo near-infrared mapping spectrometer (NIMS) investigation. J Geophys Res 104:11827–11851

    Article  ADS  Google Scholar 

  • McCord TB, Hansen GB, Hibbitts CA (2001) Hydrated salt minerals on Ganymede’s surface: evidence of an ocean below. Science 292:1523–1525

    Article  ADS  Google Scholar 

  • McKay CP, Smith HD (2005) Possibilities for methanogenic life in liquid methane on the surface of Titan. Icarus 178:274–276

    Article  ADS  Google Scholar 

  • McKay CP, Scattergood TW, Pollack JB, Borucki WJ, Van Ghysegahm HT (1988) High temperature shock formation of N2and organics on primordial Titan. Nature 332:520–522

    Article  ADS  Google Scholar 

  • Melosh HJ, Ekholm AG, Showman AP, Lorenz RD (2004) The temperature of Europa’s subsurface water ocean. Icarus 168:498–502

    Article  ADS  Google Scholar 

  • Mitri G, Showman AP (2008) Thermal convection in ice-I shells of Titan and Enceladus. Icarus 193:387–396

    Article  ADS  Google Scholar 

  • Mousis O, Lunine JI, Thomas C, Pasek M, Marboeuf U, Alibert Y, Ballenegger V, Cordier D, Ellinger Y, Pauzat F, Picaud S (2009) Clathration of volatiles in the solar nebula and implications for the origin of Titan’s atmosphere. J Astrophys 691:1780–1786

    Article  ADS  Google Scholar 

  • Neish CD, Somogyi A, Lunine JI, Smith MA (2009) Low temperature hydrolysis of laboratory tholins in ammonia-water solutions: Implications for prebiotic chemistry on Titan. Icarus 201:412–421

    Article  ADS  Google Scholar 

  • Neish CD, Somogyi A, Smith MA (2010) Titan’s Primordial soup: formation of amino acids via low–temperature hydrolysis of tholins. Astrobiology 10:337–347

    Article  ADS  Google Scholar 

  • Nelson RM et al (2009) Photometric changes on Saturn’s Titan: evidence for active cryovolcanism. Geophys Res Lett 36:L4202. doi:10.1029/2008GL036206

    Article  Google Scholar 

  • Niemann HB et al (2005) The abundances of constituents of Titan’s atmosphere from the GCMS instrument on the Huygens probe. Nature 438:779–784

    Article  ADS  Google Scholar 

  • Nimmo F (2004) Stresses generated in cooling viscoelastic ice shells: application to Europa. J Geophys Res 109:E12001

    Article  ADS  Google Scholar 

  • O’Brien DP, Lorenz RD, Lunine JI (2005) Numerical calculations of the longevity of impact oases on Titan. Icarus 173:243–153

    Article  ADS  Google Scholar 

  • Owen TC (2000) The origin of Titan’s atmosphere. Planet Space Sci 48:747–752

    Article  ADS  Google Scholar 

  • Pappalardo RT, Head JW, Greeley R (1999) The hidden ocean of Europa. Sci Am 281:54–63

    Article  Google Scholar 

  • Ramirez SI, Navarro–Gonzalez R, Coll P, Raulin F (2001) Possible contribution of different energy sources to the production of organics in Titan’s atmosphere. Adv Space Res 27:261–270

    Article  ADS  Google Scholar 

  • Rivkina E, Gilichinsky D, Wagener S, Tiedje J, McGrath J (1998) Biogeochemical activity of anaerobic microorganisms from buried permafrost sediments. Geomicrobiol J 15:187–193

    Article  Google Scholar 

  • Scheller S, Goenrich M, Boecher R, Thauer RK, Jaun B (2010) The key nickel enzyme of methanogenesis catalyses the anaerobic oxidation of methane. Nature 465:606–609

    Article  ADS  Google Scholar 

  • Schmidt J, Brilliantov N, Spahn F, Kempf S (2008) Slow dust in Enceladus’ plume from condensation and wall collisions in tiger stripe fractures. Nature 451:685–688

    Article  ADS  Google Scholar 

  • Schulze-Makuch D, Grinspoon DH (2005) Biologically enhanced energy and carbon cycling on Titan? Astrobiology 5:560–564

    Article  ADS  Google Scholar 

  • Seewald J, Zolotov MY, McCollom T (2006) Experimental investigation of carbon speciation under hydrothermal conditions. Geochim Cosmochim Acta 70:446–460

    Article  ADS  Google Scholar 

  • Shock EL, Schulte MD (1998) Organic synthesis during fluid mixing in hydrothermal systems. J Geophys Res 103:28513–28527

    Article  ADS  Google Scholar 

  • Simakov MB (2000) Dinitrogen as a possible biomarker for exobiology: the case of Titan. In: Lemarchand GA, Meech KJ (eds) Bioastronomy’99: a new era in bioastronomy. Sheridan Books, Chelsea, Michigan, USA pp 333–338

    Google Scholar 

  • Simakov MB (2004) Possible biogeochemical cycles on Titan. In: Seckbach J (ed) Origins: genesis evolution and diversity of life (Cellular origin, life in extreme habitats and astrobiology). Kluwer, Dordrecht, Netherlands, pp 645–665

    Google Scholar 

  • Sokolova TG et al (2002) Anaerobic CO–oxidizing, H2–producing prokaryotes from volcanic habitats. In: Simakov MB, Pavlov AK (eds) Astrobiology in Russia, proceedings of international workshop, St. Petersburg, Russia, 25–28 Mar 2002, pp 156–163

    Google Scholar 

  • Sotin C, Jaumann R, Buratti BJ et al (2005) Release of volatiles from a possible cryovolcano from near-infrared imaging of Titan. Nature 435:786–789

    Article  ADS  Google Scholar 

  • Spohn T, Schubert G (2003) Oceans in the icy Galilean satellites of Jupiter? Icarus 161:456–467

    Article  ADS  Google Scholar 

  • Stetter KO (2001) Hyperthermophilic microorganisms. In: Horneck G (ed) Astrobiology. The quest for the conditions of life. Springer, Berlin, Germany, pp 169–184

    Google Scholar 

  • Strobel DF (2010) Molecular hydrogen in Titan’s atmosphere: implications of the measured tropospheric and thermospheric mole fractions. Icarus 208:878–886

    Article  ADS  Google Scholar 

  • Thompson RW, Sagan C (1992) Organic chemistry on Titan — surface interactions. In: Proceedings of the symposium on Titan, Toulouse, Sept 1991, ESA SP–338, pp 167–182

    Google Scholar 

  • Tobie G, Lunine JI, Sotin C (2006) Episodic outgassing as the origin of atmospheric methane on Titan. Nature 440:61–64

    Article  ADS  Google Scholar 

  • Vuitton V, Yelle RV, McEwan MJ (2007) Ion chemistry and N–containing molecules in Titan’s upper atmosphere. Icarus 191:722–742

    Article  ADS  Google Scholar 

  • Waite JH, Niemann H, Yelle RV, Kasprzak WT, Cravens TE, Luhmann JG, McNutt RF, Ip W, Gell D, De La Haye V, Muller-Wordag I, Magee B, Borggren N, Ledvina S, Fletcher G, Walter E, Miller R, Scherer S, Thorpe R, Xu J, Block B, Arnett K (2005) Ion neutral mass spectrometer results from the first flyby of Titan. Science 308:982–986

    Article  ADS  Google Scholar 

  • Wall SD, Lopes RM, Stofan ER et al (2009) Cassini RADAR images at Hotei Arcus and western Xanadu, Titan: evidence for geologically recent cryovolcanic activity. Geophys Res Lett 36. doi:10.1029/2008GL036415

  • Wood CA, Lorenz R, Kirk R et al (2010) Impact craters on Titan. Icarus 206:334–344

    Article  ADS  Google Scholar 

  • Yung YL, Allen MA, Pinto JP (1984) Photochemistry of the atmosphere of Titan: comparison between model and observations. Astrophys J Suppl Ser 55:465–506

    Article  ADS  Google Scholar 

  • Zolotov MY, Shock EL (2000) A thermodynamic assessment of the potential synthesis of condensed hydrocarbons during cooling and dilution of volcanic gases. J Geophys Res 105:539–560

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michae Simakov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Simakov, M. (2012). Astrobiology of Titan. In: Hanslmeier, A., Kempe, S., Seckbach, J. (eds) Life on Earth and other Planetary Bodies. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4966-5_19

Download citation

Publish with us

Policies and ethics