Advertisement

A Dynamic Scheme to Assess Habitability of Exoplanets

  • Dirk Schulze-Makuch
  • Abel Méndez
  • Alberto G. Fairén
  • Philip von Paris
  • Carol Turse
  • Grayson Boyer
  • Alfonso F. Davila
  • Marina Resendes de Sousa António
Chapter
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 24)

Abstract

In the next few years, the number of catalogued exoplanets will be counted in the thousands and with it the need will arise to prioritize them in regard to habitability and the potential presence of life. Here, we suggest a first attempt of a dynamic scheme for classification based on our current understanding of parameters that are consistent and beneficial for the presence of life. These parameters include the presence of (1) a terrestrial planet or moon, which (2) is endowed with a significant atmosphere; the presence of (3) a magnetic field enveloping the exoplanet; (4) internal differentiation and plate tectonics; (5) detectable surface liquids, preferably water, on the surface of the planetary body; and (6) the detection of geoindicators; and (7) bioindicators. We propose to calculate a habitability index (HI) based on these parameters, but realize the assumptions that go into this value and the very bias introduced by the limitations of the detection methods. However, in order to account for the assumptions and limitations of this method, the HI index is an open scheme that can be updated as technology and our knowledge about habitable planets advances.

Keywords

Plate Tectonic Terrestrial Planet Dynamic Scheme Habitable Zone Extrasolar Planet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Arnold L, Brewer S (2008) The Earth as an extrasolar planet: the vegetation spectral signature today and during the last Quaternary climatic extrema. Int J Astrobiol 8:81–94CrossRefGoogle Scholar
  2. Blakemore R (1975) Magnetotactic Bacteria. Science 190:377–379ADSCrossRefGoogle Scholar
  3. Connerney JEP, Acuña MH, Wasilewski PJ, Ness NF, Reme H, Mazelle C, Vignes D, Lin RP, Mitchell DL, Cloutier PA (1999) Magnetic lineations in the ancient crust of Mars. Science 284:794–798ADSCrossRefGoogle Scholar
  4. Cuntz M, von Bloh W, Bunama C, Franck S (2003) On the possibility of earth-type habitable planets around 47 UMa. Icarus 162:214–221ADSCrossRefGoogle Scholar
  5. Ekenbäck A, Holmström M, Wurz P, Griessmeier J-M, Lammer H, Selsis F, Penz T (2010) Energetic neutral atoms around HD 209458 b: estimations of magnetospheric properties. Astrophys J 709:670–679ADSCrossRefGoogle Scholar
  6. Fairén AG, Dohm JM (2004) Age and origin of the lowlands of Mars. Icarus 168:277–284ADSCrossRefGoogle Scholar
  7. Ford E, Seager S, Turner E (2001) Characterization of extrasolar terrestrial planets from diurnal photometric variability. Nature 412:885–887ADSCrossRefGoogle Scholar
  8. Gaidos E, Williams D (2004) Seasonality on terrestrial extrasolar planets: inferring obliquity and surface conditions from infrared light curves. New Astron 10:67–77ADSCrossRefGoogle Scholar
  9. Gaidos E, Deschenes B, Dundon L, Fagan K (2005) Beyond the principle of plentitude: a review of terrestrial planet habitability. Astrobiology 5:100–126ADSCrossRefGoogle Scholar
  10. Gardner J et al (2006) The James Webb space telescope. Space Sci Rev 123:485–606ADSCrossRefGoogle Scholar
  11. Heap S (2010) Detecting biomarkers in ExoPlanetary Atmospheres with terrestrial planet finder. EAS Publications Series. Retrieved from http://www.eas-journal.org/articles/eas/pdf/2010/02/eas1041042.pdf
  12. Jones B (2008) Exoplanets – search methods, discoveries, and prospects for astrobiology. Int J Astrobiol 7:279–292CrossRefGoogle Scholar
  13. Kaltenegger L (2010) Characterizing habitable exomoons. Astrophys J Lett 712. doi: 10.1088/2041-8205/712/2/L125
  14. Kaltenegger L, Jucks K (2005) Atmospheric biomarkers and their evolution over geological timescales. Proc Int Astron Union 1:259–264, Cambridge University PressCrossRefGoogle Scholar
  15. Kasting J, Whitmire D, Reynolds R (1993) Habitable zones around main sequence stars. Icarus 101:108–128ADSCrossRefGoogle Scholar
  16. Kitzmann D, Patzer ABC, von Paris P, Godolt M, Stracke B, Gebauer S, Grenfell JL, Rauer H (2010) Clouds in the atmospheres of extrasolar planets. I. Climatic effects of multi-layered clouds for Earth-like planets and implications for habitable zones. Astron Astrophys 511:A66ADSCrossRefGoogle Scholar
  17. Mallama A (2009) Characterization of terrestrial exoplanets based on the phase curves and albedos of Mercury, Venus, and Mars. Icarus 204:11–14ADSCrossRefGoogle Scholar
  18. Miller-Ricci E, Seager S (2008) The atmospheres of extrasolar super-earths. Proc Int Astron Union 4:263–271, Cambridge University PressCrossRefGoogle Scholar
  19. Moskovitz N, Gaidos E, Williams D (2009) Effect of lunarlike satellites on the orbital infrared light curves of earth-analog planets. Astrobiology 9:269–277ADSCrossRefGoogle Scholar
  20. Schulze-Makuch D, Grinspoon DH (2005) Biologically enhanced energy and carbon cycling on Titan? Astrobiology 5:560–567ADSCrossRefGoogle Scholar
  21. Schulze-Makuch D, Guinan EF (2010) Life around a red dwarf (dM) star with special emphasis on Gliese 581. Astrobiology Science Conference, 26–29 Apr 2010, League City, TXGoogle Scholar
  22. Schulze-Makuch D, Irwin LN (2008) Life in the universe: expectations and constraints. Springer, Berlin/New YorkGoogle Scholar
  23. Segura A, Krelove K, Kasting J, Sommerlatt D, Meadows V, Crisp D, Cohen M, Mlawer E (2003) Ozone concentrations and ultraviolet fluxes on Earth-like planets around other stars. Astrobiology 3:689–708ADSCrossRefGoogle Scholar
  24. Selsis F, Kasting J, Levrard B, Paillet J, Ribas I, Delfosse X (2007) Habitable planets around the star Gliese 581? Astron Astrophys 476:1373–1387ADSCrossRefGoogle Scholar
  25. Sleep NH (1994) Martian plate tectonics. J Geophys Res 99:5639–5655ADSCrossRefGoogle Scholar
  26. Smith D, Scalo J, Wheeler J (2004) Transport of ionizing radiation in terrestrial-like exoplanet atmospheres. Icarus 171:229–253ADSCrossRefGoogle Scholar
  27. Sozzetti A (2005) Astrometric methods and instrumentation to identify and characterize extrasolar planets: a review. Publ Astron Soc Pac 117:1021–1048ADSCrossRefGoogle Scholar
  28. von Bloh W, Bounama C, Cuntz M, Franck S (2007) The habitability of super-Earths in Gliese 581. Astron Astrophys 476:1365–1372ADSCrossRefGoogle Scholar
  29. Ward PD, Brownlee D (2000) Rare Earth: why complex life is uncommon in the universe. Springer, New YorkGoogle Scholar
  30. Williams D, Gaidos E (2008) Detecting the glint of starlight on the oceans of distant planets. Icarus 195:927–937ADSCrossRefGoogle Scholar
  31. Williams D, Pollard D (2002) Earth-like worlds on eccentric orbits: excursions beyond the habitable zone. Int J Astrobiol 1:61–69CrossRefGoogle Scholar
  32. Wordsworth R, Forget F, Selsis F, Madeleine J, Millour E, Eymet V (2010) Is Gliese 581 d habitable? Some constraints from radiative-convective climate modeling. Astron Astrophys. A22. doi: 10.1051/0004-6361/201015053

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Dirk Schulze-Makuch
    • 1
  • Abel Méndez
    • 2
  • Alberto G. Fairén
    • 3
  • Philip von Paris
    • 4
  • Carol Turse
    • 1
  • Grayson Boyer
    • 5
  • Alfonso F. Davila
    • 3
  • Marina Resendes de Sousa António
    • 1
  1. 1.School of Earth and Environmental SciencesWashington State UniversityPullmanUSA
  2. 2.Planetary Habitability LaboratoryUniversity of Puerto Rico at AreciboAreciboUSA
  3. 3.NASA SETI Institute – NASA Ames Research CenterMoffett FieldUSA
  4. 4.Institut für PlanetenforschungDeutsches Zentrum für Luft- und Raumfahrt (DLR)BerlinGermany
  5. 5.Department of Chemistry and BiochemistryArizona State UniversityTempeUSA

Personalised recommendations