Advertisement

Dynamical Aspects for the Earth’s Habitability

  • Elke Pilat-Lohinger
Chapter
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 24)

Abstract

Discoveries of more than 560 extrasolar planets show a huge diversity of these planetary systems. Most of the extrasolar planetary systems are quite different to our solar system, only some of them indicate similarities with our system. By now, no other system than ours is known to host a habitable planet like the Earth. Assuming that solar system-like configurations are the most favorable ones where a habitable Earth might exist, we show the influence of the architecture of the planetary system on the habitability. The dynamics in the Solar System is certainly dominated by the two giant planets Jupiter and Saturn. Since it is more likely to find two planets with similar characteristics in a system than a clone of the Jupiter–Saturn pair of our Solar System, we vary the mass ratio of the two planets and their mutual distance. For the different configurations, we study the influence on test bodies (with negligible mass) moving in the habitable zone (HZ). In this chapter, we will discuss the dynamics of various configurations and illustrate some cases which would influence the habitability of the Earth significantly.

Keywords

Solar System Planetary System Semimajor Axis Giant Planet Terrestrial Planet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was carried out in the framework of project P19569- N16 supported by the Austrian Science Fund (FWF).

References

  1. Asghari N, Broeg C, Carone L, Casas-Miranda R et al (2004) Stability of terrestrial planets in the habitable zone of Gl777A, HD72659, Gl614, 47Uma and HD4208. Astron Astrophys 426:353–365ADSCrossRefGoogle Scholar
  2. Barnes R, Greenberg R (2006) Stability limits in extrasolar planetary systems. Astrophys J 647:L163–L166ADSCrossRefGoogle Scholar
  3. Barnes R, Raymond SN (2004) Predicting planets in known extrasolar planetary systems I. Test particle simulations. Astrophys J 617:569–574ADSCrossRefGoogle Scholar
  4. Beaugé C, Ferraz-Mello S, Michtchenko TA, Giuppone CA (2008) Orbital determination and dynamics of resonant extrasolar planetary systems. Proc IAU Symp 249:427–440ADSGoogle Scholar
  5. Chambers JE (1999) A hybrid symplectic integrator that permits close encounters between massive bodies. Mon Not R Astron Soc 304:793–799ADSCrossRefGoogle Scholar
  6. Dvorak R, Pilat-Lohinger E, Funk B, Freistetter F (2003) A study of the stable regions in the planetary system HD74156 – can it host earthlike planets in the habitable zones? Astron Astrophys 410:L13ADSCrossRefGoogle Scholar
  7. Dvorak R, Pilat-Lohinger E, Schwarz R, Freistetter F (2004) Extrasolar Trojan planets close to habitable zones. Astron Astrophys 426:L37–L40ADSCrossRefGoogle Scholar
  8. Dvorak R, Pilat-Lohinger E, Bois E, Schwarz R, Funk B, Beichman C, Danchi W, Eiroa C, Fridlund M, Henning T et al (2010) Dynamical habitability of planetary systems. Astrobiology 10:33–43ADSCrossRefGoogle Scholar
  9. Érdi B, Sándor Z (2005) Stability of co-orbital motion in exoplanetary systems. Celest Mech Dyn Astron 92:113–121ADSzbMATHCrossRefGoogle Scholar
  10. Érdi B, Dvorak R, Sándor Z, Pilat-Lohinger E, Funk B (2004) The dynamical structure of the habitable zone in the HD38529, HD168443 and HD169830 systems. Mon Not R Astron Soc 351:1043–1048ADSCrossRefGoogle Scholar
  11. Fabrycky DC (2010) Non-Keplerian dynamics of exoplanets. In: Seager S (ed) Exoplanets. The University of Arizona Press, Tucson, pp 217–238. ISBN 978-0-8165-2945-2Google Scholar
  12. Ferraz-Mello S, Michtchenko TA, Beaugé C, Callegari N Jr (2005) Extrasolar planetary systems. Lect Notes Phys 683:219–271ADSCrossRefGoogle Scholar
  13. Forget F, Pierrehumbert RT (1997) Warming early Mars with carbon dioxide clouds that scatter infrared radiation. Science 278:1273ADSCrossRefGoogle Scholar
  14. Funk B, Eggl S, Gyergyovits M, Schwarz R, Pilat-Lohinger E (2011) On the influence of the Kozai mechanism in habitable zones of extrasolar planetary systems, Astron Astrophys 526:98Google Scholar
  15. Funk B, Schwarz R, Pilat-Lohinger E, Süli Á, Dvorak R (2009) Stability of inclined orbits of terrestrial planets in habitable zones. Planet Space Sci 57:434–440ADSCrossRefGoogle Scholar
  16. Funk B, Wuchterl G, Schwarz R, Pilat-Lohinger E, Eggl S (2010) The stability of ultra-compact planetary systems. Astron Astrophys 516:82–88ADSCrossRefGoogle Scholar
  17. Haghighipour N, Dvorak R, Pilat-Lohinger E (2010) Planetary dynamics and habitable planet formation in binary star systems. In: Haghighipour N (ed) Planets in binary star systems, vol 366, Astrophysics space science library. Springer, Dordrecht/New York, p 285CrossRefGoogle Scholar
  18. Holman MJ, Wiegert PA (1999) Long-term stability of planets in binary systems. Astron J 117:621–28ADSCrossRefGoogle Scholar
  19. Ji J, Lui L, Kinoshita H, Li G (2005) Could the 47 Ursae majoris planetary system be a second solar system? Predicting the earth-like planets. Astrophys J 631:1191–1197ADSCrossRefGoogle Scholar
  20. Jones BW, Sleep PN (2002) The stability of the orbits of Earth-mass planets in the habitable zone of 47 Ursae Majoris. Astron Astrophys 393:1015–1026ADSCrossRefGoogle Scholar
  21. Jones BW, Underwood DR, Sleep PN (2005) Prospects for habitable “Earths” in known exoplanetary systems. Astrophys J 622:1091–1101ADSCrossRefGoogle Scholar
  22. Jones BW, Sleep PN, Underwood DR (2006) Habitability of known exoplanetary systems based on measured stellar properties. Astrophys J 649:1010–1019ADSCrossRefGoogle Scholar
  23. Kasting JF, Whitmire DP, Reynolds RT (1993) Habitable zones around main sequence stars. Icarus 101:108–128ADSCrossRefGoogle Scholar
  24. Laskar J (1990) The chaotic motion of the solar system-a numerical estimate of the size of the chaotic zones. Icarus 88:266–291ADSCrossRefGoogle Scholar
  25. Laskar J, Correia ACM (2011) Searching for stable orbits in the HD 10180 planetary system. In: Bouchy F, Diaz R, Moutou C (eds) Detection and dynamics of transiting exoplanets, EPJ Web of Conferences 11: id.05001. doi:  10.1051/epjconf/20101105001
  26. Laughlin G, Chambers JE (2002) Extrasolar Trojans: the viability and detectability of planets in the 1:1 resonance. Astron J 124:592–600ADSCrossRefGoogle Scholar
  27. Menou K, Tabachnik S (2003) Dynamical habitability of known extrasolar planetary systems. Astrophys J 583:473–488ADSCrossRefGoogle Scholar
  28. Michtchenko TA, Ferraz-Mello S, Beaugé C (2010) Dynamical instabilities in planetary systems. In: Go’zdziewski K, Niedzielski A, Schneider J (eds) Extrasolar planets in multi-body systems: theory and observations, European Astronomical Society Publications Series 42: 315–331Google Scholar
  29. Mischna MA, Kasting JF, Pavlov A, Freedman R (2000) Influence of carbon dioxide clouds on early martian climate. Icarus 145:546–554ADSCrossRefGoogle Scholar
  30. Murray CD, Correia ACM (2010) Keplerian orbits and dynamics of exoplanets. In: Seager S (ed) Exoplanets. The University of Arizona Press, Tucson, pp 15–23. ISBN 978-0-8165-2945-2Google Scholar
  31. Murray CD, Dermott SF (1999) Solar system dynamics. Cambridge University Press, Cambridge, pp 274–317zbMATHGoogle Scholar
  32. Pilat-Lohinger E, Dvorak R (2002) Stability of S-type orbits in binaries. Celest Mech Dyn Astron 82:143ADSzbMATHCrossRefGoogle Scholar
  33. Pilat-Lohinger E, Funk B (2010) Dynamical stability of extra-solar planets. In: Souchay J, Dvorak R (eds) Dynamics of small solar system bodies and exoplanets, vol 790, Lecture Notes in Physics. Springer, Heidelberg/London, pp 481–510CrossRefGoogle Scholar
  34. Pilat-Lohinger E, Süli Á, Robutel P, Freistetter F (2008a) The influence of giant planets near a mean motion resonance on Earth-like planets in the habitable zone of Sun-like stars. Astrophys J 681:1639–1645ADSCrossRefGoogle Scholar
  35. Pilat-Lohinger E, Robutel P, Süli Á, Freistetter R (2008b) On the stability of Earth-like planets in multi-planet systems. Celest Mech Dyn Astron 102:83ADSzbMATHCrossRefGoogle Scholar
  36. Pilat-Lohinger E, Eggl S, Winkler T (2011) ExoStab: A www-Tool to verify the Dynamical Stability of Extrasolar Planets. In: Süli Á (ed) Proceedings of the 5th Austro-Hungarian workshop, PADEU (Published by the Astron.Dept.of the Eötvös Univ), 20, p. 119Google Scholar
  37. Rabl G, Dvorak R (1988) Satellite-type planetary orbits in double stars – a numerical approach. Astron Astrophys 191:385–391ADSGoogle Scholar
  38. Raymond SN, Barnes R, Kaib NA (2006) Predicting planets in known extrasolar planetary systems III. Forming terrestrial planets. Astrophys J 644:1223–1231ADSCrossRefGoogle Scholar
  39. Rivera E, Haghighipour N (2007) On the stability of test-particles in extrasolar multiple planet systems. Mon Not R Astron Soc 374:599–613ADSCrossRefGoogle Scholar
  40. Rivera E, Lissauer J (2000) Stability analysis of the planetary system orbiting νAndromedae. Astrophys J 530:454–463ADSCrossRefGoogle Scholar
  41. Rivera E, Lissauer J (2001) Stability analysis of the planetary system orbiting νAndromedae II simulations using new lick observatory fits. Astrophys J 554:1141LCrossRefGoogle Scholar
  42. Robutel P, Gabern F (2006) The resonant structure of Jupiter’s Trojan asteroids—I. Long-term stability and diffusion. Mon Not R Astron Soc 372:1463–1482ADSCrossRefGoogle Scholar
  43. Rodríguez A, Michtchenko TA, Miloni O (2011) Angular momentum exchange during secular migration of two planet systems, preprint, 2011arXiv1106.0014R. Celest Mech Dyn Astron 111:161–178Google Scholar
  44. Sándor Zs, Süli Á, Érdi B, Pilat-Lohinger E, Dvorak R (2007) A stability catalogue of the habitable zones in extrasolar planetary systems. Mon Not R Astron Soc 375:1495–1502ADSCrossRefGoogle Scholar
  45. Schwarz R, Dvorak R, Pilat-Lohinger E, Süli Á, Érdi B (2007) Trojan planets in HD 108874? Astron Astrophys 462:1165–1170ADSCrossRefGoogle Scholar
  46. Williams DM, Pollard D (2002) Earth-like worlds on eccentric orbits: excursions beyond the habitable zone. Int J Astrobiol 1:61–69CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Institute of AstronomyUniversity of ViennaWienAustria

Personalised recommendations