Advertisement

Origin of the Genetic Code and Abiotic Synthesis of Organic Compounds

  • Zita Martins
Chapter
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 24)

Abstract

The genetic code is intrinsic to all living organisms. However, it is still not known what the first replication system was. The origin of the genetic code remains uncertain, and several hypotheses have been proposed. Theories include the synthesis of peptides preceding the appearance of genes (“Metabolic Model”) or molecules of nucleic acids being responsible for the storage of genetic information (“Genetic Model”). In this chapter, the main theories for the first replication systems are outlined. Possible pathways for the prebiotic synthesis of the first monomers are reviewed. The contributions of endogenous and exogenous sources are presented, summarizing how the genetic code may have appeared on Earth.

Keywords

Genetic Code Peptide Nucleic Acid Hydrogen Cyanide Carbonyl Sulfide Prebiotic Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The author would like to thank the Royal Society for financial support.

References

  1. Amend JP, Shock EL (1998) Energetics of amino acid synthesis in hydrothermal ecosystems. Science 281:1659ADSGoogle Scholar
  2. Bean HD, Anet FAL, Gould IR, Hud NV (2006) Glyoxylate as a backbone linkage for a prebiotic ancestor of RNA. Orig Life Evol Biosph 36:39–63ADSGoogle Scholar
  3. Belozerskii AN (1959) On the species specificity of the nucleic acids of bacteria. In: Oparin AI, Pasynskii AG, Braunshtei AE, Pavlovskaya TE (eds) Academy of Sciences of the U.S.S.R., Moscow, English-French-German edition by Clark F, Synge RLM (eds) The origin of life on Earth. MacMillan, New York, pp 322–331 (in Russian)Google Scholar
  4. Blagojevic V, Petrie S, Bohme DK (2003) Gas-phase syntheses for interstellar carboxylic and amino acids. Mon Not R Astron Soc 339:L7–L11ADSGoogle Scholar
  5. Botta O, Glavin DP, Kminek G, Bada JL (2002) Relative amino acid concentrations as a signature for parent body processes of carbonaceous chondrites. Orig Life Evol Biosph 32:143–163ADSGoogle Scholar
  6. Brachet J (1959) Les acides nucléiques et l’origine des proteins. In: Oparin AI, Pasynskii AG, Braunshtei AE, Pavlovskaya TE (eds) Academy of Sciences of the U.S.S.R., Moscow, English-French-German edition by Clark F, and Synge RLM (eds) The origin of life on Earth. MacMillan, New York, pp 361–367 (in Russian)Google Scholar
  7. Brinton KLF, Engrand C, Glavin DP, Bada JL, Maurette M (1998) A search for extraterrestrial amino acids in carbonaceous Antarctic micrometeorites. Orig Life Evol Biosph 28:413–424ADSGoogle Scholar
  8. Buchanan JM (1965) Chairman’s remarks. In: Fox SW (ed) The origin of prebiological systems and of their molecular matrices. Academic, New York, pp 101–104Google Scholar
  9. Bullard T, Freudenthal J, Avagyan S, Kahr B (2007) Test of Cairns-Smith’s crystals-as-genes hypothesis. Faraday Disc 136:231–245ADSGoogle Scholar
  10. Butlerow A (1861) Formation synthetique d’une substance sucree. C R Acad Sci 53:145–147Google Scholar
  11. Cairns-Smith AG (1982) Genetic takeover and the mineral origins of life. Cambridge University Press, New YorkGoogle Scholar
  12. Cairns-Smith AG (1985) Seven clues to the origin of life. Cambridge University Press, CambridgeGoogle Scholar
  13. Callahan MP, Smith KE, Cleaves HJ, Ruzicka J, Stern JC, Glavin DP, House CH, Dworkin JP (2011) Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases. Proc Natl Acad Sci USA 108:13995–13998ADSGoogle Scholar
  14. Cech TR (1986) A model for the RNA-catalyzed replication of RNA. Proc Natl Acad Sci USA 83:4360–4363ADSGoogle Scholar
  15. Charnley SB (1997) On the nature of interstellar organic chemistry. In: Cosmovici CB, Bowyer S, Werthimer D (eds) Astronomical and biochemical origins and the search for life in the universe. Editrice Compositori, Bologna. IAU Colloq 161:89Google Scholar
  16. Charnley SB, Ehrenfreund P, Kuan Y.-J (2001) Spectroscopic diagnostics of organic chemistry in the protostellar environment. Spectrochim Acta A: Mol Biomol Spectrosc 57:685–704ADSGoogle Scholar
  17. Cherny DY, Belotserkovskii BP, Frank-Kamenetskii MD, Egholm M, Buchardt O, Berg RH, Nielsen PE (1993) DNA unwinding upon strand-displacement binding of a thymine-substituted polyamide to double-stranded DNA. Proc Natl Acad Sci USA 90:1667–1670ADSGoogle Scholar
  18. Chyba C, Sagan C (1992) Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life. Nature 355:125–132ADSGoogle Scholar
  19. Cohn CA, Hannson TK, Larrson HS, Sowerby SJ, Holm NG (2001) Fate of prebiotic adenine. Astrobiology 1:477–480ADSGoogle Scholar
  20. Cooper GW, Cronin JR (1995) Linear and cyclic aliphatic carboxamides of the Murchison meteorite: hydrolyzable derivatives of amino acids and other carboxylic acids. Geochim Cosmochim Acta 59:1003–1015ADSGoogle Scholar
  21. Cooper GW, Onwo WM, Cronin JR (1992) Alkyl phosphonic acids and sulfonic acids in the Murchison meteorite. Geochim Cosmochim Acta 56:4109–4115ADSGoogle Scholar
  22. Crick FHC (1968) The origin of the genetic code. J Mol Biol 38:367–379Google Scholar
  23. Cronin JR, Chang S (1993) Organic matter in meteorites: molecular and isotopic analyses of the Murchison meteorites. In: Greenberg JM, Mendoza-Gomez CX, Pirronello V (eds) The chemistry of life’s origin. Kluwer, Dordrecht, pp 209–258Google Scholar
  24. Cronin JR, Pizzarello S, Cruikshank DP (1988) Organic matter in carbonaceous chondrites, planetary satellites, asteroids and comets. In: Kerridhe JF, Matthews MS (eds) Meteorites and the early solar system. University of Arizona Press, Tucson, pp 819–857Google Scholar
  25. Crovisier J, Bockelée-Morvan D, Colom P, Biver N, Despois D, Lis DC, The Team for target-of-opportunity radio observations of comets (2004) The composition of ices in comet C/1995 O1 (Hale-Bopp) from radio spectroscopy. Further results and upper limits on undetected species. Astron Astrophys 418:1141–1157ADSGoogle Scholar
  26. De Duve C (1991) Blueprint for a cell: the nature and origin of life. N. Patterson, Burlington, pp 135–141Google Scholar
  27. De Graaf RM, Visscher J, Schwartz AW (1997) Reactive phosphonic acids as prebiotic carriers of phosphorus. J Mol Evol 44:237–241Google Scholar
  28. Dose K (1994) On the origin of biological information. J Biol Phys 20:181–192Google Scholar
  29. Egholm M, Buchardt O, Nielsen EE, Berg RH (1992a) Peptide nucleic acids (PNA). Oligonucleotide analogs with an achiral peptide backbone. J Am Chem Soc 114:1895–1897Google Scholar
  30. Egholm M, Buchardt O, Nielsen EE, Berg RH (1992b) Recognition of guanine and adenine in DNA by cytosine and thymine containing peptide nucleic acids (PNA). J Am Chem Soc 114:9677–9678Google Scholar
  31. Egholm M, Behrens C, Christensen L, Berg RH, Nielsen EE, Buchardt O (1993) Peptide nucleic acids containing adenine or guanine recognize thymine and cytosine in complementary DNA sequences. J Chem Soc Chem Commun 9:800–801Google Scholar
  32. Ehrenfreund P, Bernstein MP, Dworkin JP, Sandford SA, Allamandola LJ (2001) The photostability of amino acids in space. Astrophys J 550:L95–L99ADSGoogle Scholar
  33. Ehrenfreund P, Irvine W, Becker L, Blank J, Brucato JR, Colangeli L, Derenne S, Despois D, Dutrey A, Fraaije H, Lazcano A, Owen T, Robert F (2002) Astrophysical and astrochemical insights into the origin of life. Rep Prog Phys 65:1427–1487ADSGoogle Scholar
  34. Ehrenfreund P, Charnley SB, Botta O (2005) Voyage from dark clouds to the early Earth. In: Livio M, Reid N, Sparks WB (eds) Astrophysics of life. Telescope Science Institute Symposium Series 2005, 16. Cambridge University Press, Cambridge, pp 1–20Google Scholar
  35. Eigen M, Schuster P (1979) The hypercycle: a principle of natural self-organization. Springer, Berlin, p 62Google Scholar
  36. Eschenmoser A (1997) Towards a chemical etiology of nucleic acid structure. Orig Life Evol Biosph 27:535–553ADSGoogle Scholar
  37. Eschenmoser A (1999) Chemical etiology of nucleic acid structure. Science 284:2118–2124Google Scholar
  38. Ferris JP (1987) Prebiotic synthesis: problems and challenges. Cold Spr Harbor Symp Quant Biol 52:29–35Google Scholar
  39. Ferris JP (1992) Chemical markers of prebiotic chemistry in hydrothermal systems. Orig Life Evol Biosph 22:109ADSGoogle Scholar
  40. Ferris JP (1993) Catalysis and prebiotic RNA synthesis. Orig Life Evol Biosph 23:307–315ADSGoogle Scholar
  41. Ferris JP (2005) Mineral catalysis and prebiotic synthesis: montmorillonite-catalyzed formation of RNA. Elements 1:145–149Google Scholar
  42. Ferris JP, Ertem G (1993) Montmorillonite catalysis of RNA oligomer formation in aqueous solution. A model for the prebiotic formation of RNA. J Am Chem Soc 115:12270–12275Google Scholar
  43. Ferris JP, Hagan JWJ (1984) HCN and chemical evolution: the possible role of cyano compounds in prebiotic synthesis. Tetrahedron 40:1093–1120Google Scholar
  44. Ferris JP, Orgel LE (1965) Aminomalononitrile and 4–amino-5–cyanoimidazole in hydrogen cyanide polymerization and adenine synthesis. J Am Chem Soc 87:4976–4977Google Scholar
  45. Ferris JP, Orgel LE (1966) An unusual photochemical rearrangement in the synthesis of adenine from hydrogen cyanide. J Am Chem Soc 88:1074Google Scholar
  46. Ferris JP, Sanchez RA, Orgel LE (1968) Studies in prebiotic synthesis: III. Synthesis of pyrimidines from cyanoacetylene and cyanate. J Mol Biol 33:693–704Google Scholar
  47. Ferris JP, Joshi PC, Edelson EH, Lawless JG (1978) HCN: a plausible source of purines, pyrimidines and amino acids on the primitive earth. J Mol Evol 11:293–311Google Scholar
  48. Fox SW, Dose K (1977) Molecular evolution and the origin of life. M Dekker, New YorkGoogle Scholar
  49. Fuller WD, Sanchez RA, Orgel LE (1972a) Studies in prebiotic synthesis. VI. Synthesis of purine nucleosides. J Mol Biol 67:25–33Google Scholar
  50. Fuller WD, Sanchez RA, Orgel LE (1972b) Studies in prebiotic synthesis. VII. Solid-state synthesis of purine nucleosides. J Mol Evol 1:249–257Google Scholar
  51. Gilbert W (1986) Origin of life: the RNA world. Nature 319:618ADSGoogle Scholar
  52. Glavin DP, Matrajt G, Bada JL (2004) Re-examination of amino acids in Antarctic micrometeorites. Adv Space Res 33:106–113ADSGoogle Scholar
  53. Haldane JBS (1929) The origin of life. Ration Ann 148:3–10Google Scholar
  54. Haldane JBS (1954) The origin of life. New Biol 16:12–27Google Scholar
  55. Haldane JBS (1965) Data needed for a blueprint of the first organism. In: Fox SW (ed) The origins of prebiological systems and of their molecular matrices. Academic, New York, pp 11–18Google Scholar
  56. Holland HD (1984) The chemical evolution of the atmosphere and oceans. Princeton University Press, Princeton, 583Google Scholar
  57. Huber C, Wächtershäuser G (1998) Peptides by activation of amino acids with CO on (Ni, Fe)S surfaces: implications for the origin of life. Science 281:670–672ADSGoogle Scholar
  58. Huber C, Wächtershäuser G (2003) Primordial reductive amination revisited. Tetra Lett 44:1695–1697Google Scholar
  59. Huber C, Wächtershäuser G (2006) α-Hydroxy and α-amino acids under possible Hadean, volcanic origin-of-life conditions. Science 314:630–632ADSGoogle Scholar
  60. Huber C, Eisenreich W, Hecht S, Wächtershäuser G (2003) A possible primordial peptide cycle. Science 301:938–940ADSGoogle Scholar
  61. Johnson AP, Cleaves HJ, Dworkin JP, Glavin DP, Lazcano A, Bada JL (2008) The Miller volcanic spark discharge experiment. Science 322:404ADSGoogle Scholar
  62. Johnston WK, Unrau PJ, Lawrence MS, Glasner ME, Bartel DP (2001) RNA-catalyzed RNA polymerization: accurate and general RNA-templated primer extension. Science 292:1319–1325ADSGoogle Scholar
  63. Joyce GF (1991) The rise and fall of the RNA world. New Biol 3:399–407Google Scholar
  64. Joyce GF (2000) RNA structure: ribozyme evolution at the crossroads. Science 289:401–402Google Scholar
  65. Joyce GF (2002) The antiquity of RNA-based evolution. Nature 418:214–221ADSGoogle Scholar
  66. Joyce GF, Visser GM, van Boeckel CAA, van Boom JH, Orgel LE, van Westrenen J (1984) Chiral selection in poly(C)-directed synthesis of oligo(G). Nature 310:602–604ADSGoogle Scholar
  67. Joyce GF, Schwartz AW, Miller SL, Orgel LE (1987) The case for an ancestral genetic system involving simple analogues of the nucleotides. Proc Natl Acad Sci USA 84:4398–4402ADSGoogle Scholar
  68. Kasting JF (1993) Earth’s early atmosphere. Science 259:920–926ADSGoogle Scholar
  69. Kasting JF, Catling D (2003) Evolution of a habitable planet. Annu Rev Astron Astrophys 41:429–463ADSGoogle Scholar
  70. Kauffman SA (1986) Autocatalytic sets of proteins. J Theor Biol 119:1–24Google Scholar
  71. Kawamura K, Ferris JP (1994) Kinetic and mechanistic analysis of dinucleotide and oligonucleotide formation from the 5′-phosphorimidazolide of adenosine on Na+ −  montmorillonite. J Am Chem Soc 116:7564–7572Google Scholar
  72. Keefe AD, Miller SL (1995) Are polyphosphates or phosphate esters prebiotic reagents? J Mol Evol 41:693–702Google Scholar
  73. Kissel J, Krueger FR (1987) The organic component in dust from comet Halley as measured by the PUMA mass spectrometer on Board VEGA 1. Nature 326:755–760ADSGoogle Scholar
  74. Kminek G, Botta O, Glavin DP, Bada JL (2002) Amino acids in the Tagish Lake meteorite. Meteor Planet Sci 37:697–701ADSGoogle Scholar
  75. Krishnamurthy R, Pitsch S, Arrhenius G (1999) Mineral induced formation of pentose-2,4-bisphosphates. Orig Life Evol Biosph 29:139–152ADSGoogle Scholar
  76. Kuan Y-J, Yan C-H, Charnley SB, Kisiel Z, Ehrenfreund P, Huang H-C (2003) A search for interstellar pyrimidine. Month Nat Roy Astron Soc 345:650–656ADSGoogle Scholar
  77. Kuhn H (1972) Self-organization of molecular systems and evolution of the genetic apparatus. Agew Chem Int Ed Engl 11:798–820Google Scholar
  78. Larralde R, Robertson MP, Miller SL (1995) Rates of decomposition of ribose and other sugars: Implications for chemical evolution. Proc Natl Acad Sci USA 92:8158–8160ADSGoogle Scholar
  79. Lazcano A (1986) Prebiotic evolution and the origin of cells. In: Margulis L, Guerrero R, Lazcano A (eds) Origin of life and evolution of cells.Treballs de la Societat Catalana de Biologia 39:73103Google Scholar
  80. Leman L, Orgel L, Reza Ghadiri M (2004) Carbonyl sulfide-mediated prebiotic formation of peptides. Science 306:283ADSGoogle Scholar
  81. Levy M, Miller SL (1998) The stability of the RNA bases: implication for the origin of life. Proc Natl Acad Sci USA 95:7933–7938ADSGoogle Scholar
  82. Levy M, Miller SL, Oró J (1999) Production of guanine from NH4CN polymerizations. J Mol Evol 49:165–168Google Scholar
  83. Liu SY, Mehringer DM, Snyder LE (2001) Observations of formic acid in hot molecular cores. Astrophys J 552L:654–663ADSGoogle Scholar
  84. Martins Z, Sephton MA (2009) Extraterrestrial amino acids. In: Hughes AB (ed) Amino acids, peptides and proteins in organic chemistry. Wiley-VCH Verlag GmbH & Co, KGaA, Weinheim, pp 1–42Google Scholar
  85. Martins Z, Alexander CMO’D, Orzechowska GE, Fogel ML, Ehrenfreund P (2007) Indigenous amino acids in primitive CR meteorites. Meteor Planet Sci 42:2125–2136ADSGoogle Scholar
  86. Martins Z, Botta O, Fogel ML, Sephton MA, Glavin DP, Watson JS, Dworkin JP, Schwartz AW, Ehrenfreund P (2008) Extraterrestrial nucleobases in the Murchison meteorite. Earth Planet Sci Lett 270:130–136ADSGoogle Scholar
  87. Matrajt G, Pizzarello S, Taylor S, Brownlee D (2004) Concentration and variability of the AIB amino acid in polar micrometeorites: implications for the exogenous delivery of amino acids to the primitive Earth. Meteor Planet Sci 39:1849–1858ADSGoogle Scholar
  88. Menor-Salván C, Ruiz-Bermejo M, Osuna-Esteban S, Muñoz-Caro G, Veintemillas-Verdaguer S (2009) Synthesis of polycyclic aromatic hydrocarbons and acetylene polymers in ice: a Prebiotic Scenario. Chem Biodivers 5(12):2729–2739Google Scholar
  89. Miller SL (1953) A production of amino acids under possible primitive Earth conditions. Science 117:528–529ADSGoogle Scholar
  90. Miller SL, Chyba C (1992) Origins of life/Primordial soup. Sky Telesc 83:604ADSGoogle Scholar
  91. Miller SL, Schlesinger G (1983) The atmosphere of the primitive earth and the prebiotic synthesis of organic compounds. Adv Space Res 3:47–53ADSGoogle Scholar
  92. Miller SL, Urey HC (1959) Organic compound synthesis on the primitive. Earth Sci 130:245–251Google Scholar
  93. Minard RD, Hatcher PG, Gourley RC, Matthews CN (1998) Structural investigations of hydrogen cyanide polymers: new insights using TMAH thermochemolysis/GC-MS. Orig Life Evol Biosph 28:461–473ADSGoogle Scholar
  94. Miyakawa S, Murasawa K-I, Kobayashi K, Sawaoka AB (2000) Abiotic synthesis of guanine with high-temperature plasma. Orig Life Evol Biosph 30:557–566ADSGoogle Scholar
  95. Miyakawa S, Cleaves HJ, Miller SL (2002) The cold origin of life: B. Implications based on pyrimidines and purines produced from frozen ammonium cyanide solutions. Orig Life Evol Biosph 32:209–218ADSGoogle Scholar
  96. Mojzsis SJ, Arrhenius G, McKeegan KD, Harrison TM, Nutman AP, Friend CRL (1996) Evidence for life on Earth before 3,800 million years ago. Nature 384:55–59ADSGoogle Scholar
  97. Müller D, Pitsch S, Kittaka A, Wagner E, Wintner CE, Eschenmoser A, Ohlofjgewidmet G (1990) Chemie von a-aminonitrilen. Aldomerisierung von glycolaldehyd-phosphat zu racemischen hexose-2,4,6-triphosphaten und (in gegenwart von formaldehyd) racemischen pentose-2,4-diphosphaten: rac-Allose-2,4,6-triphosphat und rac-ribose-2,4-diphosphat sind die reaktionshauptprodukte. Helv Chim Acta 73:1410–1468Google Scholar
  98. Nelson KE, Levy M, Miller SL (2000) Peptide nucleic acids rather than RNA may have been the first genetic molecule. Proc Natl Acad Sci USA 97:3868–3871ADSGoogle Scholar
  99. Nelson KE, Robertson MP, Levy M, Miller SL (2001) Concentration by evaporation and the prebiotic synthesis of cytosine. Orig Life Evol Biosph 31:221–229ADSGoogle Scholar
  100. Nielsen EE (1993) Peptide nucleic acid (PNA): a model structure for the primordial genetic material? Orig Life Evol Biosph 23:323–327ADSGoogle Scholar
  101. Nielsen PE (1999) Peptide nucleic acid. A molecule with two identities. Acc Chem Res 32:624–630Google Scholar
  102. Nielsen EE, Egholm M, Berg RH, Buchardt O (1991) Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254:1497–1500ADSGoogle Scholar
  103. Nuevo M, Milam SN, Sandford SA, Elsila JE, Dworkin JP (2009) Formation of uracil from the ultraviolet photo-irradiation of pyrimidine in pure H2O ices. Astrobiology 9:683–695ADSGoogle Scholar
  104. Oparin AI (1924) Proiskhodenie Zhizni. Moscoksky Rabotichii, Moscow (Translated by Bernal, AS (1967)) In: Carrington R (ed) The origin of life. Weidenfeld and Nicolson, London, pp 199–234Google Scholar
  105. Oparin AI (1952) The origin of life. Dover, New YorkGoogle Scholar
  106. Oparin AI (1961) Life: its nature, origin, and development. Oliver and Boyd Publishers, Edinburg, UKGoogle Scholar
  107. Orgel LE (1968) Evolution of the genetic apparatus. J Mol Biol 38:381–393Google Scholar
  108. Orgel LE (1994) The origin of life on earth. Sci Am 271:77–83Google Scholar
  109. Orgel L (2000) A simpler nucleic acid. Science 290:1306–1307Google Scholar
  110. Orgel LE (2004) Prebiotic chemistry and the origin of the RNA world. Crit Rev Biochem Mol Biol 39:99–123Google Scholar
  111. Oró J (1960) Synthesis of adenine from ammonium cyanide. Biochem Biophys Res Commun 2:407–412Google Scholar
  112. Oró J (1961) Mechanism of synthesis of adenine from hydrogen cyanide under possible primitive Earth conditions. Nature 191:1193–1194ADSGoogle Scholar
  113. Oró J, Kimball AP (1961) Synthesis of purines under possible primitive Earth conditions I. Adenine from hydrogen cyanide. Arch Biochem Biophys 94:217–227Google Scholar
  114. Pasek MA (2008) Rethinking early Earth phosphorus geochemistry. Proc Natl Acad Sci USA 105:853–858ADSGoogle Scholar
  115. Peeters Z, Botta O, Charnely SB, Ruiterkamp R, Ehrenfreund P (2003) The astrobiology of nucleobases. Astrophys J 593:L129–132ADSGoogle Scholar
  116. Peltzer ET, Bada JL (1978) α-Hydroxycarboxylic acids in the Murchison meteorite. Nature 272:443–444ADSGoogle Scholar
  117. Peltzer ET, Bada JL, Schlesinger G, Miller SL (1984) The chemical conditions on the parent body of the Murchison meteorite: some conclusions based on amino, hydroxy, and dicarboxylic acids. Adv Space Res 4:69–74ADSGoogle Scholar
  118. Pitsch S, Eschenmoser A, Gedulin B, Hui S, Arrhenius G (1995) Mineral induced formation of sugar phosphates. Orig Life Evol Biosph 25:294–334ADSGoogle Scholar
  119. Pitsch S, Wendeborn S, Krishnamurthy R, Holzner A, Minton M, Bolli M, Miculka C, Windhab N, Micura R, Stanek M, Jaun B, Eschenmoser A (2003) The β-D-ribopyranosyl-(4´  →  2´)-oligonucleotide system (“pyranosyl-RNA”): synthesis and resume of base-pairing properties. Helv Chim Acta 86:4270–4363Google Scholar
  120. Powner MW, Gerland B, Sutherland JD (2009) Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459:239–242ADSGoogle Scholar
  121. Reid C, Orgel LE (1967) Model for origin of monosaccharides: synthesis of sugars in potentially prebiotic conditions. Nature 216:455ADSGoogle Scholar
  122. Rich A (1962) On the problems of evolution and biochemical information transfer. In: Kasha M, Pullman B (eds) Horizons in biochemistry. Academic, New York, pp 103–126Google Scholar
  123. Robertson MP, Miller SL (1995) An efficient prebiotic synthesis of cytosine and uracil. Nature 375:772–774ADSGoogle Scholar
  124. Saladino R, Crestini C, Costanzo G, Negri R, Di Mauro E (2001) A possible prebiotic synthesis of purine, adenine, cytosine, and 4(3H)-pyrimidinone from formamide: implications for the origin of life. Bioorg Med Chem 9:1249–1253Google Scholar
  125. Sanchez RA, Orgel LE (1970) Studies in prebiotic synthesis V. Synthesis and photoanomerization of pyrimidine nucleosides. J Mol Biol 47:531–543Google Scholar
  126. Sanchez RA, Ferris JP, Orgel LE (1967) Studies in prebiotic synthesis. II. Synthesis of purine precursors and amino acids from aqueous hydrogen cyanide. J Mol Biol 30:223–253Google Scholar
  127. Sandford SA, Aléon J, Alexander CMO’D, Araki T, Bajt S, Baratta GA, Borg J, Bradley JP, Brownlee DE, Brucato JR, Burchell MJ, Busemann H, Butterworth A, Clemett SJ, Cody G, Colangeli L, Cooper G, D’Hendecourt L, Djouadi Z, Dworkin JP, Ferrini G, Fleckenstein H, Flynn GJ, Franchi IA, Fries M, Gilles MK, Glavin DP, Gounelle M, Grossemy F, Jacobsen C, Keller LP, Kilcoyne ALD, Leitner J, Matrajt G, Meibom A, Mennella V, Mostefaoui S, Nittler LR, Palumbo ME, Papanastassiou DA, Robert F, Rotundi A, Snead CJ, Spencer MK, Stadermann FJ, Steele A, Stephan T, Tsou P, Tyliszczak T, Westphal AJ, Wirick S, Wopenka B, Yabuta H, Zare RN, Zolensky ME (2006) Organics captured from comet 81P/Wild 2 by the Stardust spacecraft. Science 314:1720–1724ADSGoogle Scholar
  128. Schmidt JG, Christensen L, Nielsen PE, Orgel LE (1997a) Information transfer from DNA to peptide nucleic acids by template- directed syntheses. Nucleic Acids Res 25:4792–4796Google Scholar
  129. Schmidt JG, Nielsen PE, Orgel LE (1997b) Information transfer from peptide nucleic acids to RNA by template- directed syntheses. Nucleic Acids Res 25:4797–4802Google Scholar
  130. Schoning K, Scholz P, Guntha S, Wu X, Krishnamurthy R, Eschenmoser A (2000) Chemical etiology of nucleic acid structure: the alpha-threofuranosyl-(3′  →  2′) oligonucleotide system. Science 290:1347–1351ADSGoogle Scholar
  131. Schopf JW (1993) Microfossils of the early Archean Apex Chert: new evidence of the antiquity of life. Science 260:640–646ADSGoogle Scholar
  132. Schutte WA et al (1999) Weak ice absorption features at 7.24 and 7.41 MU M in the spectrum of the obscured young stellar object W 33A. Astron Astrophys 343:966–976ADSGoogle Scholar
  133. Schwartz AW (1993) The RNA world and its origins. Planet Space Sci 43:161–165ADSGoogle Scholar
  134. Schwartz AW (1997) Prebiotic phosphorus chemistry reconsidered. Orig Life Evol Biosph 27:505–512ADSGoogle Scholar
  135. Schwartz AW, Bakker CG (1989) Was adenine the first purine? Science 245:1102–1104ADSGoogle Scholar
  136. Sephton MA (2004) Meteorite composition: organic matter in ancient meteorites. Astron Geophys 45:2.08–2.14Google Scholar
  137. Shapiro R (1988) Prebiotic ribose synthesis: a critical analysis. Orig Life Evol Biosph 18:71–85Google Scholar
  138. Sowerby SJ, Heckl WM (1998) The role of self-assembled monolayers of the purine and pyrimidine bases in the emergence of life. Orig Life Evol Biosph 28:283–310ADSGoogle Scholar
  139. Sowerby SJ, Petersen GB (1997) Scanning tunneling microscopy of uracil monolayers self-assembled at the solid/liquid interface. J Electroanal Chem 433:85–90Google Scholar
  140. Sowerby SJ, Petersen GB (1999) Scanning tunnelling microscopy and molecular modelling of xanthine monolayers self-assembled at the solid–liquid interface: relevance to the origin of life. Orig Life Evol Biosph 29:597–614ADSGoogle Scholar
  141. Sowerby SJ, Edelwirth M, Heckl WM (1998) Self-assembly at the prebiotic solid–liquid interface: structures of self-assembled monolayers of adenine and guanine bases formed on inorganic surfaces. J Phys Chem B 102:5914–5922Google Scholar
  142. Sowerby SJ, Cohn CA, Heckl WM, Holm NG (2001) Differential adsorption of nucleic acid bases: relevance to the origin of life. Proc Natl Acad Sci USA 98:820–822ADSGoogle Scholar
  143. Springsteen G, Joyce GF (2004) Selective derivatization and sequestration of ribose from a prebiotic mix. J Am Chem Soc 126:9578–9583Google Scholar
  144. Stribling R, Miller SL (1987) Energy yields for hydrogen cyanide and formaldehyde syntheses: the HCN and amino acid concentrations in the primitive ocean. Orig Life Evol Biosph 17:261–273Google Scholar
  145. Symonds RB, Rose WI, Bluth GJS, Gerlach TM (1994) Volcanic gas studies—methods, results, and applications. Rev Mineral 30:1–66Google Scholar
  146. Urey HC (1952) The planets. Yale Univ Press, New HavenGoogle Scholar
  147. Voet AB, Schwartz AW (1983) Uracil synthesis via HCN oligomerization. Orig Life 12:45–49ADSGoogle Scholar
  148. Wächtershäuser G (1988) Before enzymes and templates: theory of surface metabolism. Microbiol Rev 52:452–484Google Scholar
  149. Wächtershäuser G (1992) Groundworks for an evolutionary biochemistry: the iron sulphur world. Prog Biophys Mol Biol 58:85–201Google Scholar
  150. Wächtershäuser G (1997) The origin of life and its methodological chalanges. J Theor Biol 187:483–494Google Scholar
  151. Walker JCG (1986) Carbon dioxide on the early Earth. Orig Life 16:117–127ADSGoogle Scholar
  152. Watson JD, Crick FHC (1953) A structure for deoxyribose nucleic acid. Nature 171:737–738ADSGoogle Scholar
  153. White HB III (1982) In: Everse J, Anderson B, You K-S (eds) Evolution of coenzymes and the origin of pyridine nucleotides. Academic, New York, pp 1–17Google Scholar
  154. Winter D, Zubay G (1995) Binding of adenine and adenine-related compounds to the clay montmorillonite and the mineral hydronylapatite. Orig Life Evol Biosph 25:61–81ADSGoogle Scholar
  155. Woese CR (1967) The genetic code: the molecular basis for gene expression. Harper and Row, New YorkGoogle Scholar
  156. Zhang L, Peritz AE, Meggers E (2005) A simple glycol nucleic acid. J Am Chem Soc 127:4174–4175Google Scholar
  157. Zhang L, Peritz AE, Meggers E (2006) Synthesis of glycol nucleic acids. Synthesis 4:645–653Google Scholar
  158. Zubay G (1998) Studies on the lead-catalyzed synthesis of aldopentoses. Orig Life Evol Biosph 28:13–26ADSGoogle Scholar
  159. Zubay G, Mui T (2001) Prebiotic synthesis of nucleotides. Orig Life Evol Biosph 31:87–102ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Department of Earth Science and EngineeringImperial College LondonLondonUK

Personalised recommendations