Skip to main content

Chemical Evolution in Primeval Seas

  • Chapter
  • First Online:
Book cover Life on Earth and other Planetary Bodies

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 24))

  • 1766 Accesses

Abstract

During the last few decades, experimental evidence and theoretical investigation have led us to believe that life on earth must have evolved as a result of several complicated reactions that occurred among the primitive substances present on the earth’s surface. The complexity of the reactions increased stepwise, and more and more complex molecules were generated which ultimately took shape of a living cell. This idea was first proposed by the Russian scientist A. I. Oparin in 1924, and since then researchers have been trying to find out more about it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beck MT (1978) Prebiotic Coordination Chemistry: The possible role of transition metal complexes in the chemical evolution, In: Sigel H (ed.) Metal Ions in Biological Systems, Marcel Dekker, New York, 7:1

    Google Scholar 

  • Bernal JD (1951) The physical basis of life. Routledge and Kegen Paul, London

    Google Scholar 

  • Bodenheimer W, Heller L (1967) Sorption ofα-amino-acids by copper montmorillonite. Clay Min 7:167

    Article  Google Scholar 

  • Cady SS, Pinnavaia TJ (1978) Porphyrin intercalation in mica-type silicates. Inorg Chem 17:1501

    Article  Google Scholar 

  • Cairns-Smith G (1992) In: Tran Tharh Van J, Mounolou JC, Schneider J, McKay C (eds) Possible role for minerals in early organisms. Editions Frontières, Gif-sur-Yvette, p 119

    Google Scholar 

  • Calvin M (1959) Evolution of enzymes and photosynthetic apparatus. Science 130:1170

    Article  ADS  Google Scholar 

  • Choughuley ASU, Subbaram AS, Kazi ZA, Chadha MS (1972) Peptide formation in the presence of simple inorganic phosphates. Curr Mol Biol 9:48

    Google Scholar 

  • Egami F (1974) Minor elements and evolution. J Mol Evol 4:113

    Article  Google Scholar 

  • Egami F (1975) Origin and early evolution of transition element enzymes. J Biochem (Tokyo) 77:1165

    Google Scholar 

  • Ertem G, Ferris JP (1996) Synthesis of RNA oligomers on heterogeneous templates. Nature 379:238

    Article  ADS  Google Scholar 

  • Ferris JP, Joshi PC, Edelson EH, Lawless JG (1978) HCN: a plausible source of purines, pyrimidines and amino acids on primitive earth. J Mol Evol 11:293

    Article  Google Scholar 

  • Fox SW, Dose K (1977) Molecular evolution and the origin of life. Marcel Dekker, New York

    Google Scholar 

  • Fox SW, Harada K (1961) Synthesis of uracil under conditions of a thermal model of prebiological chemistry. Science 133:1923

    Article  ADS  Google Scholar 

  • Gabel NW, Ponnamperuma C (1967) Model for origin of monosaccharides. Nature 216:453

    Google Scholar 

  • Handschuth GJ, Lohrmann E, Orgel E (1973) Effect of magnesium and calcium ions on urea catalyzed phosphorylation reaction. J Mol Evol 2:251

    Article  Google Scholar 

  • Hatanaka H, Egami F (1977) The formation amino acids and related oligomers from formaldehyde and hydroxylamine in modified sea medium related to prebiotic conditions. Bull Chem Soc Jpn 50:1147

    Article  Google Scholar 

  • Hedges JI, Hare PE (1987) Amino acid adsorption by clay minerals in distilled water. Geochimica et Cosmochimica Acta 51(2):255

    Google Scholar 

  • Huang W, Ferris JP (2003): Synthesis of 35–40 mers of RNA oligomers from unblocked monomer. A simple approach to the RNA world. Chem Commun 1458

    Google Scholar 

  • Kamaluddin, Yanagawa H, Egami F (1979) Formation of molecule of biological interest from formaldehyde and hydroxylamine in a modified sea medium. J Biochem 85:1503

    Google Scholar 

  • Kamaluddin, Yanagawa H, Egami F (1981) Possible role of aminoacetonitrile as condensing agent in chemical evolution. Indian J Biochem Biophys 18:215

    Google Scholar 

  • Kamaluddin, Nath M, Deopujari SW (1986) Chemical evolution of iron containing enzymes: mixed ligands complexes of iron as intermediating steps. Orig Life 17:59

    Article  ADS  Google Scholar 

  • Kamaluddin, Nath M, Deopujari SW (1988) Chemical evolution of peroxidase: amino acid pentacyanoferrate (II) complexes as model. Orig Life Evol Biosph 18:267

    Article  Google Scholar 

  • Khenokh MA, Lapinskaya E (1974) Photochemical abiogenic synthesis of amino acids in a hydrosphere containing hydrocarbons and nitrates. J Evol Biochem Physiol 10:140

    Google Scholar 

  • Kulaev IS (1973) Inorganic polyphosphates in the evolution of phosphorus metabolism. In: Probl. Vozniknoveniya Sushchonosti Zhizni, Moscow, p. 176

    Google Scholar 

  • Lawless JG, Levi N (1979) The role of metal ions in chemical evolution: polymerization of alanine and glycine in a cation exchanged clay environment. J Mol Evol 13:281

    Article  Google Scholar 

  • McKay DS, Gibson EK Jr, Thomas-Keprta KL, Vali H, Romanek CS, Clemett SJ, Chillier XDF, Maechling CR, Zare RN (1996) Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science 273:924

    Article  ADS  Google Scholar 

  • Miller SL (1953) Production of amino acids under possible primitive earth conditions. Science 117:528

    Article  ADS  Google Scholar 

  • Nina B (1984) Metal ions as a factor of functional evolution and of development of some important biochemical properties in prebiotic and biological conditions. Orig Life 14:451

    Article  Google Scholar 

  • Oparin AI (1924) The origin of life. Moscow Worker Publisher, Moscow (in Russian)

    Google Scholar 

  • Oparin AI, Fesenkov V (1961) Life in the universe. Twayne Publishers, New York

    Google Scholar 

  • Orgel LE (1974) Sedimentary minerals under reducing conditions. In: Dose K, Fox SW, Deborin GA, Pavlovskaya TE (eds) The origin of life, evolution and biochemistry. Plenum Press, New York, p 369

    Chapter  Google Scholar 

  • Oró J (1961) Mechanism of synthesis of adenine from hydrogen cyanide under possible primitive Earth conditions. Nature 191:1193

    Article  ADS  Google Scholar 

  • Oró J, Kimbal AP (1962) Synthesis of purine under possible primitive earth conditions. Arch Biochem Biophys 96:263

    Article  Google Scholar 

  • Ponnamperuma C, Lemmon RM, Mariner R, Calvin M (1963) Formation of adenine by electron irradiation of methane, ammonia and water. Proc Natl Acad Sci USA 49:737

    Article  ADS  Google Scholar 

  • Raulin F, Mourey D, Toupance G (1982) Organic syntheses from CH4-N2atmospheres: implications for titan. Orig Life 12:267

    Article  ADS  Google Scholar 

  • Ryan JW, Fox SW (1973) Activation of glycine by ATP a divalent cation and proteinoid microsphere. Curr Mol Biol 5:115

    Google Scholar 

  • Sagan C, Khare BN (1979) Tholins: organic chemistry of interstellar grains and gas. Nature 277:102

    Article  ADS  Google Scholar 

  • Shemin De (1956) Biosynthesis of porphyrins. Harvey Lect Ser 50:258

    Google Scholar 

  • Smith EL (1970) Evolution of enzymes. In: Boyer PD (ed) The enzymes, vol I, 3rd edn. Academic, New York, p 267

    Google Scholar 

  • Ventilla M, Egami F (1977) Formation of amino acids and related oligomers from formaldehyde and hydroxylamine in a solution of transition metal ions. J Mol Evol 9:105

    Article  Google Scholar 

  • Weiss A (1981) Replication and evolution in inorganic systems. Angew Chem Int Ed Engl 20:850

    Article  Google Scholar 

  • Yanagawa H, Egami F (1977) Marigranules from glycine, and acidic basic and aromatic amino acids in modified sea medium. Proc Jpn Acad 53:42

    Google Scholar 

  • Yanagawa H, Kobayshi Y, Egami F (1980) Characterization of marigranules organized particles. J Biochem 87:855

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamaluddin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kamaluddin (2012). Chemical Evolution in Primeval Seas. In: Hanslmeier, A., Kempe, S., Seckbach, J. (eds) Life on Earth and other Planetary Bodies. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4966-5_12

Download citation

Publish with us

Policies and ethics