Principles and Applications of Hybrid Quantum Mechanical and Molecular Mechanical Methods

Abstract

Due to the unconquerable computational cost of the first principle approaches to investigate the systems like enzymes, a compromise way is the hybrid quantum mechanical and molecular mechanical (QM/MM) method. It shares the advantage of accuracy of quantum mechanics and efficiency of molecular mechanics. In this chapter, some fundamental principles of QM/MM are addressed, and its applications to the simulation of enzymatic systems are also presented. Finally, some perspectives of this method will be discussed.

Keywords

Molecular Dynamic Simulation Umbrella Sampling Calculated Free Energy Weighted Histogram Analysis Method Classical Force Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was funded by Natural Science Foundation of China (No. 21073125 and 31170675), and by the Program for New Century Excellent Talents in University (No. NCET-10-0606).

References

  1. 1.
    Warshel A, Levitt M (1976) J Mol Biol 103:227–249 CrossRefGoogle Scholar
  2. 2.
    Gao J, Truhlar DG (2002) Annu Rev Phys Chem 53:467–505 CrossRefGoogle Scholar
  3. 3.
    Garcia-Viloca M, Gao J, Karplus M, Truhlar DG (2004) Science 303:186 CrossRefGoogle Scholar
  4. 4.
    Lin H, Truhlar DG (2007) Theor Chem Acc 117:185–199 CrossRefGoogle Scholar
  5. 5.
    Senn HM, Thiel W (2009) Angew Chem Int Ed 48(7):1198–1229. doi: 10.1002/anie.200802019 CrossRefGoogle Scholar
  6. 6.
    Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, Suhai S, Seigert G (1998) Phys Rev B 58:7260–7268 CrossRefGoogle Scholar
  7. 7.
    Svensson M, Humbel S, Froese RDJ, Matsubara T, Sieber S, Morokuma K (1996) J Phys Chem 100:19357–19363 CrossRefGoogle Scholar
  8. 8.
    Vreven T, Morokuma K, Farkas O, Schlegel HB, Frisch MJ (2003) J Comput Chem 24:760–769 CrossRefGoogle Scholar
  9. 9.
    Zheng L, Chen M, Yang W (2009) J Chem Phys 130:234105 CrossRefGoogle Scholar
  10. 10.
    Min D, Zheng L, Harris W, Chen M, Lv C, Yang W (2010) J Chem Theory Comput 6:2253–2266 CrossRefGoogle Scholar
  11. 11.
    Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Pearlman DA, Crowley M, Walker RC, Zhang W, Hayik BWS, Roitberg A, Seabra G, Wong KF, Paesani F, Wu X, Brozell S, Tsui V, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Beroza P, Mathews DH, Schafmeister C, Ross WS, Kollman PA (2006) AMBER9, University of California, San Francisco Google Scholar
  12. 12.
    Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) J Comput Chem 4:187–217 CrossRefGoogle Scholar
  13. 13.
    Jorgensen WL, Tirado-Rives J (1988) J Am Chem Soc 110:1657–1666 CrossRefGoogle Scholar
  14. 14.
    van Gunsteren WF, Billeter SR, Eising AA, Hünenberger PH, Krüger P, Mark AE, Scott WRP, Tironi IG (1996) Biomolecular simulation: the GROMOS96 manual and user guide; vdf Hochschulverlag AG an der ETH Zürich and BIOMOS b.v. Zürich, Groningen Google Scholar
  15. 15.
    HyperChem (1994) HyperChem users manual, computational chemistry. Hypercube, Waterloo Google Scholar
  16. 16.
    König PH, Hoffmann M, Frauenheim T, Cui Q (2005) J Phys Chem B 109:9082–9095 CrossRefGoogle Scholar
  17. 17.
    Thery V, Rinaldi D, Rivail J-L, Maigret B, Ferenczy GG (1994) J Comput Chem 15:269 CrossRefGoogle Scholar
  18. 18.
    Gao J, Amara P, Alhambra C, Field MJ (1998) J Phys Chem A 102:4714–4721 CrossRefGoogle Scholar
  19. 19.
    Philipp DM, Friesner RA (1999) J Comput Chem 20:1468 CrossRefGoogle Scholar
  20. 20.
    Zhang Y, Lee T-S, Yang W (1999) J Chem Phys 110:1 CrossRefGoogle Scholar
  21. 21.
    Zhang Y (2006) Theor Chem Acc 116:43–50 CrossRefGoogle Scholar
  22. 22.
    Elstner M, Frauenheim T, Kaxiras E, Seifert G, Suhai S (2000) Phys Status Solidi B 217:357 CrossRefGoogle Scholar
  23. 23.
    Cui Q, Elstner M, Kaxiras E, Frauenheim T, Karplus M (2001) J Phys Chem B 105:569–585 CrossRefGoogle Scholar
  24. 24.
    Elstner M (2006) Theor Chem Acc 116:316–325 CrossRefGoogle Scholar
  25. 25.
    Pu J, Gao J, Truhlar DG (2004) J Phys Chem A 108:5454–5463 CrossRefGoogle Scholar
  26. 26.
    Seabra G, Walker RC, Elstener M, Case DA, Roitberg A (2007) J Phys Chem A 111:5655–5664 CrossRefGoogle Scholar
  27. 27.
    Goyal P, Ghosh N, Phatak P, Clemens M, Gaus M, Elstner M, Cui Q (2011) J Am Chem Soc 133:14981–14997 CrossRefGoogle Scholar
  28. 28.
    Xu D, Guo H, Cui Q (2007) J Am Chem Soc 129(35):10814–10822 CrossRefGoogle Scholar
  29. 29.
    Xu D, Guo H, Cui Q (2007) J Phys Chem A 111(26):5630–5636 CrossRefGoogle Scholar
  30. 30.
    Elstner M, Cui Q, Munih P, Kaxiras E, Frauenheim T, Karplus M (2003) J Comput Chem 24:565 CrossRefGoogle Scholar
  31. 31.
    Kirkwood JG (1935) J Chem Phys 3:300–313 CrossRefGoogle Scholar
  32. 32.
    Haydock C, Sharp JCP (1990) Biophys J 57:1269–1279 CrossRefGoogle Scholar
  33. 33.
    Torrie GM, Valleau JP (1977) J Comput Phys 23:187–199 CrossRefGoogle Scholar
  34. 34.
    Kumar S, Bouzida D, Swendsen RH, Kollman PA, Rosenberg JM (1992) J Comput Chem 13:1011–1021 CrossRefGoogle Scholar
  35. 35.
    Roux B (1995) Comput Phys Commun 91:275–282 CrossRefGoogle Scholar
  36. 36.
    Xu D, Zhou Y, Xie D, Guo H (2005) J Med Chem 48:6679–6689 CrossRefGoogle Scholar
  37. 37.
    Xu D, Xie D, Guo H (2006) J Biol Chem 281:8740–8747 CrossRefGoogle Scholar
  38. 38.
    Wu S, Xu D, Guo H (2010) J Am Chem Soc 132:17986–17988 CrossRefGoogle Scholar
  39. 39.
    Simona F, Magistrato A, Dal Peraro M, Cavalli A, Vila AJ, Carloni P (2009) J Biol Chem 284(41):28164–28171. doi: 10.1074/jbc.M109.049502 CrossRefGoogle Scholar
  40. 40.
    Simona F, Magistrato A, Vera DM, Garau G, Vila AJ, Carloni, P (2007) Proteins 69:595–605 CrossRefGoogle Scholar
  41. 41.
    Garau G, Bebrone C, Anne C, Galleni M, Frere J-M, Dideberg O (2005) J Mol Biol 345:785–795 CrossRefGoogle Scholar
  42. 42.
    Quiocho FA, Lipscomb WN (1971) Adv Protein Chem 25:1 CrossRefGoogle Scholar
  43. 43.
    Christianson DW, Lipscomb WN (1989) Acc Chem Res 22:62–69 CrossRefGoogle Scholar
  44. 44.
    Rees DC, Lipscomb WN (1983) J Mol Biol 168:367–387 CrossRefGoogle Scholar
  45. 45.
    Kilshtain-Vardi A, Glick M, Greenblatt HM, Goldblum A, Shoham G (2003) Acta Crystallogr D 59:323–333 CrossRefGoogle Scholar
  46. 46.
    Rees DC, Lipscomb, WN (1981) Proc Natl Acad Sci USA 78(9):5455–5459 CrossRefGoogle Scholar
  47. 47.
    Christianson DW, Lipscomb WN (1986) J Am Chem Soc 108:545–546 CrossRefGoogle Scholar
  48. 48.
    Christianson DW, Lipscomb WN (1986) J Am Chem Soc 108:4998–5003 CrossRefGoogle Scholar
  49. 49.
    Shoham G, Christianson DW, Lipscomb WN (1988) Proc Natl Acad Sci USA 85:684–688 CrossRefGoogle Scholar
  50. 50.
    Kim H, Lipscomb WN (1991) Biochem 30:8171–8180 CrossRefGoogle Scholar
  51. 51.
    Rees DC, Lipscomb WN (1982) J Mol Biol 160:475–498 CrossRefGoogle Scholar
  52. 52.
    Christianson DW, Lipscomb WN (1987) J Am Chem Soc 109:5536–5538 CrossRefGoogle Scholar
  53. 53.
    Lipscomb WN, Strater N (1996) Chem Rev 96:2375–2433 CrossRefGoogle Scholar
  54. 54.
    Christianson DW, David PR, Lipscomb WN (1987) Proc Natl Acad Sci USA 84:1512–1515 CrossRefGoogle Scholar
  55. 55.
    Lee HC, Ko YH, Baek SB, Kim DH (1998) Bioorg Med Chem Lett 8:3379–3384 CrossRefGoogle Scholar
  56. 56.
    Britt BM, Peticolas WL (1992) J Am Chem Soc 114:5295–5303 CrossRefGoogle Scholar
  57. 57.
    Banci L, Bertini I, Lapenna G (1994) Proteins 18(2):186–197 CrossRefGoogle Scholar
  58. 58.
    Alex A, Clark T (1992) J Comput Chem 13(6):704–717 CrossRefGoogle Scholar
  59. 59.
    Alvarez-Santos S, Gonzalez-Lafont A, Lluch JM (1994) Can J Chem 72:2077 CrossRefGoogle Scholar
  60. 60.
    Alvarez-Santos S, Gonzalez-Lafont A, Lluch JM, Oliva B, Aviles FX (1998) New J Chem 22:319–325 CrossRefGoogle Scholar
  61. 61.
    Vardi-Kilshtain A, Shoham G, Goldblum A (2003) Mol Phys 101(17):2715–2724 CrossRefGoogle Scholar
  62. 62.
    Cross JB, Vreven T, Merouech SO, Mobashery S, Schlegel HB (2005) J Phys Chem B 109:4761–4769 CrossRefGoogle Scholar
  63. 63.
    Szeto MWY, Mujika JI, Zurek J, Mulholland AJ, Harvey JN (2009) J Mol Strut (Theochem) 898:106–114 CrossRefGoogle Scholar
  64. 64.
    Klishtain A, Warshel A (2009) Proteins, Struct Funct Genet 77:536–550 CrossRefGoogle Scholar
  65. 65.
    Xu D, Guo H (2009) J Am Chem Soc 131:9780–9788 CrossRefGoogle Scholar
  66. 66.
    Wu S, Zhang C, Xu D, Guo H (2010) J Phys Chem B 114(28):9259–9267. doi: 10.1021/jp101448j CrossRefGoogle Scholar
  67. 67.
    Wu S, Zhang C, Xu D, Guo H (2011) J Phys Chem B 115(34):10360–10367 CrossRefGoogle Scholar
  68. 68.
    Rees DC, Lipscomb WN (1983) Proc Natl Acad Sci USA 80:7151–7154 CrossRefGoogle Scholar
  69. 69.
    Liu J, Wang X, Xu D (2010) J Phys Chem B 114:1462–1470 CrossRefGoogle Scholar
  70. 70.
    Koshland DEJ (1953) Biol Rev 28:416–436 CrossRefGoogle Scholar
  71. 71.
    Sinicropi A, Andruniow T, Ferre N, Basosi R, Olivucci M (2005) J Am Chem Soc 127:11534–11535 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.College of ChemistrySichuan UniversityChengduP.R. China

Personalised recommendations