Advertisement

Quantum Transport Simulations Based on Time Dependent Density Functional Theory

  • Thomas A. Niehaus
  • GuanHua Chen

Abstract

First principles simulations of electronic quantum transport through nanostructured materials have become an area of intense research over the past years. Energy based approaches in the spirit of Landauer theory are well established in this field, but recently also methods that aim at the solution of the time dependent many electron problem become increasingly popular and highlight conduction as a dynamical process. In the first part of this chapter, we review the corresponding literature with a focus on time dependent density functional theory (TDDFT) as electronic structure method. The covered material is categorized according to the way the open boundary conditions are implemented. This division is not a mere technical point but also helps to elucidate conceptual and fundamental differences between the methods. In the second part a more detailed overview is given over one of the possible approaches: the Liouville-von Neumann scheme in TDDFT. We discuss the foundations of the method in terms of the holographic electron density theorem for open systems and present the relevant equations of motion as well as appropriate approximations. The chapter closes with a sample application of this method.

Keywords

Electron Density Function Open Boundary Condition Time Dependent Density Functional Theory Molecular Junction Hierarchical Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

GHC would like to thank KOO Siu Kong for help in the preparation of the manuscript. Support from the Hong Kong Research Grant Council (HKU700808P, HKU700909P, HKU700711P, HKUST9/CRF/08) and AoE (AOE/P-04/08) is gratefully acknowledged. TAN thanks the German Science Foundation (DFG, SPP 1243) for support.

References

  1. 1.
    Aviram A, Ratner M (1974) Molecular rectifiers. Chem Phys Lett 29(2):277–283 CrossRefGoogle Scholar
  2. 2.
    Song H, Reed M, Lee T (2011) Single molecule electronic devices. Adv Mater 14:1583 CrossRefGoogle Scholar
  3. 3.
    Cuevas JC, Scheer E (2010) Molecular electronics: an introduction to theory and experiment. World Scientific, Singapore CrossRefGoogle Scholar
  4. 4.
    Dulić D, Van der Molen S, Kudernac T, Jonkman H, De Jong J, Bowden T, Van Esch J, Feringa B, Van Wees B (2003) One-way optoelectronic switching of photochromic molecules on gold. Phys Rev Lett 91:207402 CrossRefGoogle Scholar
  5. 5.
    Gesquiere A, Park S, Barbara P (2004) F-V/SMS: a new technique for studying the structure and dynamics of single molecules and nanoparticles. J Phys Chem B 108:10301–10308 CrossRefGoogle Scholar
  6. 6.
    Guhr D, Rettinger D, Boneberg J, Erbe A, Leiderer P, Scheer E (2007) Influence of laser light on electronic transport through atomic-size contacts. Phys Rev Lett 99:86801 CrossRefGoogle Scholar
  7. 7.
    Guo X, Dong Z, Trifonov A, Yokoyama S, Mashiko S, Okamoto T (2004) Tunneling-electron-induced molecular luminescence from a nanoscale layer of organic molecules on metal substrates. Appl Phys Lett 84:969 CrossRefGoogle Scholar
  8. 8.
    Meyer C, Elzerman J, Kouwenhoven L (2007) Photon-assisted tunneling in a carbon nanotube quantum dot. Nano Lett 7:295–299 CrossRefGoogle Scholar
  9. 9.
    van der Molen S, Liao J, Kudernac T, Agustsson J, Bernard L, Calame M, van Wees B, Feringa B, Schönenberger C (2008) Light-controlled conductance switching of ordered metal-molecule-metal devices. Nano Lett 9:76–80 CrossRefGoogle Scholar
  10. 10.
    Wakayama Y, Ogawa K, Kubota T, Suzuki H, Kamikado T, Mashiko S (2004) Optical switching of single-electron tunneling in SiO/molecule/SiO multilayer on Si (100). Appl Phys Lett 85:329 CrossRefGoogle Scholar
  11. 11.
    Ward D, Scott G, Keane Z, Halas N, Natelson D (2008) Electronic and optical properties of electromigrated molecular junctions. J Phys Condens Matter 20:374118 CrossRefGoogle Scholar
  12. 12.
    Yasutomi S, Morita T, Imanishi Y, Kimura S (2004) A molecular photodiode system that can switch photocurrent direction. Science 304:1944 CrossRefGoogle Scholar
  13. 13.
    Koentopp M, Chang C, Burke K, Car R (2008) Density functional calculations of nanoscale conductance. J Phys Condens Matter 20:083203 CrossRefGoogle Scholar
  14. 14.
    Tomfohr JK, Sankey OF (2001) Time-dependent simulation of conduction through a molecule. Phys Status Solidi B 226(1):115–123 CrossRefGoogle Scholar
  15. 15.
    Ullrich C (2012) Time-dependent density-functional theory: concepts and applications. Oxford University Press, USA Google Scholar
  16. 16.
    Elliott P, Furche F, Burke K (2009) Excited states from time-dependent density functional theory. In: Reviews in computational chemistry, pp 91–165 Google Scholar
  17. 17.
    Marques M, Gross E (2004) Time-dependent density functional theory. Annu Rev Phys Chem 55:427–455 CrossRefGoogle Scholar
  18. 18.
    Marques M, Ullrich C, Nogueira F, Rubio A, Burke K, Gross E (2006) Time-dependent density functional theory, vol 706. Springer, Berlin CrossRefGoogle Scholar
  19. 19.
    Evers F, Weigend F, Koentopp M (2004) Conductance of molecular wires and transport calculations based on density-functional theory. Phys Rev B 69(23):235411 CrossRefGoogle Scholar
  20. 20.
    Sai N, Zwolak M, Vignale G, Di Ventra M (2005) Dynamical corrections to the DFT-LDA electron conductance in nanoscale systems. Phys Rev Lett 94(18):186810 CrossRefGoogle Scholar
  21. 21.
    Stefanucci G, Kurth S, Gross EKU, Rubio A (2007) Time-dependent transport phenomena. Theor Comput Chem 17:247–284 CrossRefGoogle Scholar
  22. 22.
    Vignale G, Di Ventra M (2009) Incompleteness of the Landauer formula for electronic transport. Phys Rev B 79(1):14201 CrossRefGoogle Scholar
  23. 23.
    Bushong N, Sai N, Di Ventra M (2005) Approach to steady-state transport in nanoscale conductors. Nano Lett 5:2569–2572 CrossRefGoogle Scholar
  24. 24.
    Landauer R (1989) Conductance determined by transmission: probes and quantised constriction resistance. J Phys Condens Matter 1:8099 CrossRefGoogle Scholar
  25. 25.
    Cheng C, Evans J, Van Voorhis T (2006) Simulating molecular conductance using real-time density functional theory. Phys Rev B 74:155112 CrossRefGoogle Scholar
  26. 26.
    Evans J, Voorhis T (2009) Dynamic current suppression and gate voltage response in metal-molecule-metal junctions. Nano Lett 9(7):2671–2675 CrossRefGoogle Scholar
  27. 27.
    Evans J, Vydrov O, Van Voorhis T (2009) Exchange and correlation in molecular wire conductance: nonlocality is the key. J Chem Phys 131:034106 CrossRefGoogle Scholar
  28. 28.
    Kurth S, Stefanucci G, Khosravi E, Verdozzi C, Gross E (2010) Dynamical Coulomb blockade and the derivative discontinuity of time-dependent density functional theory. Phys Rev Lett 104(23):236801 CrossRefGoogle Scholar
  29. 29.
    Zhou Z, Chu S (2009) A time-dependent momentum-space density functional theoretical approach for electron transport dynamics in molecular devices. Europhys Lett 88:17008 CrossRefGoogle Scholar
  30. 30.
    Muga J, Palao J, Navarro B, Egusquiza I (2004) Complex absorbing potentials. Phys Rep 395(6):357–426. doi: 10.1016/j.physrep.2004.03.002. http://www.sciencedirect.com/science/article/pii/S0370157304001218 CrossRefGoogle Scholar
  31. 31.
    Baer R, Seideman T, Ilani S, Neuhauser D (2004) Ab initio study of the alternating current impedance of a molecular junction. J Chem Phys 120:3387 CrossRefGoogle Scholar
  32. 32.
    Fu Y, Dudley S (1993) Quantum inductance within linear response theory. Phys Rev Lett 70(1):65–68 CrossRefGoogle Scholar
  33. 33.
    Jauho A, Wingreen N, Meir Y (1994) Time-dependent transport in interacting and noninteracting resonant-tunneling systems. Phys Rev B 50(8):5528 CrossRefGoogle Scholar
  34. 34.
    Wang B, Wang J, Guo H (1999) Current partition: a nonequilibrium Green’s function approach. Phys Rev Lett 82(2):398–401 CrossRefGoogle Scholar
  35. 35.
    Wang B, Yu Y, Zhang L, Wei Y, Wang J (2009) Oscillation of dynamic conductance of Al–Cn–Al structures: nonequilibrium Green’s function and density functional theory study. Phys Rev B 79(15):155117 CrossRefGoogle Scholar
  36. 36.
    Yamamoto T, Sasaoka K, Watanabe S (2010) Universal transition between inductive and capacitive admittance of metallic single-walled carbon nanotubes. Phys Rev B 82(20):205404 CrossRefGoogle Scholar
  37. 37.
    Yu Y, Wang B, Wei Y (2007) Corrected article: ac response of a carbon chain under a finite frequency bias. J Chem Phys 127:169901 CrossRefGoogle Scholar
  38. 38.
    Varga K (2011) Time-dependent density functional study of transport in molecular junctions. Phys Rev B 83(19):195130 CrossRefGoogle Scholar
  39. 39.
    Yam CY, Zheng X, Chen GH, Wang Y, Frauenheim T, Niehaus TA (2011) Time-dependent versus static quantum transport simulations beyond linear response. Phys Rev B 83:245448 CrossRefGoogle Scholar
  40. 40.
    Sánchez CG, Stamenova M, Sanvito S, Bowler DR, Horsfield AP, Todorov TN (2006) Molecular conduction: do time-dependent simulations tell you more than the Landauer approach? J Chem Phys 124:214708 CrossRefGoogle Scholar
  41. 41.
    Kurth S, Stefanucci G, Almbladh CO, Rubio A, Gross EKU (2005) Time-dependent quantum transport: a practical scheme using density functional theory. Phys Rev B 72(3):35308 CrossRefGoogle Scholar
  42. 42.
    Zheng X, Wang F, Yam CY, Mo Y, Chen GH (2007) Time-dependent density-functional theory for open systems. Phys Rev B 75(19):195127 CrossRefGoogle Scholar
  43. 43.
    Datta S (2005) Quantum transport: atom to transistor. Cambridge University Press, Cambridge CrossRefGoogle Scholar
  44. 44.
    Castro A, Marques M, Rubio A (2004) Propagators for the time-dependent Kohn-Sham equations. J Chem Phys 121:3425 CrossRefGoogle Scholar
  45. 45.
    Stefanucci G, Kurth S, Rubio A, Gross EKU (2008) Time-dependent approach to electron pumping in open quantum systems. Phys Rev B 77(7):075339 CrossRefGoogle Scholar
  46. 46.
    Khosravi E, Kurth S, Stefanucci G, Gross EKU (2008) The role of bound states in time-dependent quantum transport. Appl Phys A 93(2):355–364 CrossRefGoogle Scholar
  47. 47.
    Khosravi E, Stefanucci G, Kurth S, Gross E (2009) Bound states in time-dependent quantum transport: oscillations and memory effects in current and density. Phys Chem Chem Phys 11:4535–4538 CrossRefGoogle Scholar
  48. 48.
    Kamenev A, Kohn W (2001) Landauer conductance without two chemical potentials. Phys Rev B 63(15):155304 CrossRefGoogle Scholar
  49. 49.
    Burke K, Car R, Gebauer R (2005) Density functional theory of the electrical conductivity of molecular devices. Phys Rev Lett 94(14):146803 CrossRefGoogle Scholar
  50. 50.
    Umari P, Pasquarello A (2002) Ab initio molecular dynamics in a finite homogeneous electric field. Phys Rev Lett 89(15):157602 CrossRefGoogle Scholar
  51. 51.
    Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 136(3):864 CrossRefGoogle Scholar
  52. 52.
    Kohn W, Sham L (1965) Self-consistent equations including exchange and correlation effects. Phys Rev A 140:1133 Google Scholar
  53. 53.
    Runge E, Gross EKU (1984) Density-functional theory for time-dependent systems. Phys Rev Lett 52(12):997–1000 CrossRefGoogle Scholar
  54. 54.
    Fournais S, Hoffmann-Ostenhof M, Hoffmann-Ostenhof T, Østergaard Sørensen T (2002) The electron density is smooth away from the nuclei. Commun Math Phys 228(3):401–415 CrossRefGoogle Scholar
  55. 55.
    Fournais S, Hoffmann-Ostenhof M, Hoffmann-Ostenhof T, Østergaard Sørensen T (2004) Analyticity of the density of electronic wavefunctions. Ark Mat 42(1):87–106 Google Scholar
  56. 56.
    Jecko T (2010) A new proof of the analyticity of the electronic density of molecules. Lett Math Phys 93(1):73–83 CrossRefGoogle Scholar
  57. 57.
    Mezey P (1999) The holographic electron density theorem and quantum similarity measures. Mol Phys 96(2):169–178 CrossRefGoogle Scholar
  58. 58.
    Riess J, Münch W (1981) The theorem of Kohenberg and Kohn for subdomains of a quantum system. Theor Chem Acc 58(4):295–300 CrossRefGoogle Scholar
  59. 59.
    Zheng X, Yam CY, Wang F, Chen GH (2011) Existence of time-dependent density-functional theory for open electronic systems: time-dependent holographic electron density theorem. Phys Chem Chem Phys 13:14358 CrossRefGoogle Scholar
  60. 60.
    Zheng X, Chen GH, Mo Y, Koo SK, Tian H, Yam CY, Yan YJ (2010) Time-dependent density functional theory for quantum transport. J Chem Phys 133:114101 CrossRefGoogle Scholar
  61. 61.
    Jin J, Zheng X, Yan YJ (2008) Exact dynamics of dissipative electronic systems and quantum transport: hierarchical equations of motion approach. J Chem Phys 128:234703 CrossRefGoogle Scholar
  62. 62.
    Mathews J, Walker R (1970) Mathematical methods of physics. Benjamin, New York Google Scholar
  63. 63.
    Croy A, Saalmann U (2009) Partial fraction decomposition of the Fermi function. Phys Rev B 80:073102. doi: 10.1103/PhysRevB.80.073102. http://link.aps.org/doi/10.1103/PhysRevB.80.073102 CrossRefGoogle Scholar
  64. 64.
    Yam CY, Mo Y, Wang F, Li X, Chen GH, Zheng X, Matsuda Y, Tahir-Kheli J, William AG III (2008) Dynamic admittance of carbon nanotube-based molecular electronic devices and their equivalent electric circuit. Nanotechnology 19:495203 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Department of Theoretical PhysicsUniversity of RegensburgRegensburgGermany
  2. 2.Department of ChemistryThe University of Hong KongHong KongChina

Personalised recommendations