Molecular Identification of Traditional Medicinal Materials

Chapter

Abstract

Traditional medicines are consumed by 80% of the population in the world for health maintenance and disease treatment. Adulteration and substitution of the source materials have been life-threatening problems growing along with their popularity. Consequently, a reliable identification method is important for safety and quality assurance of the traditional medicinal materials. Molecular techniques provide alternative means to conventional organoleptic and chemical authentication methods and are often more superior in accuracy, sensitivity, resolution and reproducibility. Since the early 1990s, a number of molecular techniques have been developed to identify traditional medicinal materials based on DNA fingerprinting (RFLP, AP-PCR, RAPD, AFLP, DALP, ISSR, PCR-RFLP, SCAR and isothermal amplification), DNA microarray and DNA sequencing (DNA barcoding and FINS). These techniques are capable of differentiating traditional medicinal materials and their adulterants and substitutes, and in some cases, distinguishing closely related species, subspecies, varieties, cultivars and species from different localities. This chapter introduces the major molecular identification techniques and reviews their applications in the identification of animal and botanical medicinal materials.

Keywords

Internal Transcribe Spacer Amplify Fragment Length Polymorphism Aristolochic Acid American Ginseng Medicinal Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    World Health Organization. (2008). Traditional medicine. http://www.who.int/mediacentre/factsheets/fs134/en/. Dec 2008.
  2. 2.
    Vanherweghem, J., Tielemans, C., Abramowicz, D., et al. (1993). Rapidly progressive interstitial renal fibrosis in young women: Association with slimming regimen including Chinese herbs. Lancet, 341, 387–391.PubMedCrossRefGoogle Scholar
  3. 3.
    Vanhaelen, M., Vanhaelen-Fastre, R., But, P. P. H., et al. (1994). Identification of aristolochic acid in Chinese herbs. Lancet, 343, 174.PubMedCrossRefGoogle Scholar
  4. 4.
    But, P. P. H. (1994). Herbal poisoning caused by adulterants or erroneous substitutes. The Journal of Tropical Medicine and Hygiene, 97, 371–374.PubMedGoogle Scholar
  5. 5.
    Lee, S., Lee, T., Lee, B., et al. (2004). Fanconi’s syndrome and subsequent progressive renal failure caused by a Chinese herb containing aristolochic acid. Nephrology (Carlton, Vic.), 9, 126–129.CrossRefGoogle Scholar
  6. 6.
    Lo, S. H., Wong, K. S., Arlt, V. M., et al. (2005). Detection of Herba Aristolochia Mollissemae in a patient with unexplained nephropathy. American Journal of Kidney Diseases, 45, 407–410.PubMedCrossRefGoogle Scholar
  7. 7.
    Debelle, F. D., Vanherweghem, J. L., & Nortier, J. L. (2008). Aristolochic acid nephropathy: A worldwide problem. Kidney International, 74, 158–169.PubMedCrossRefGoogle Scholar
  8. 8.
    Jha, V. (2010). Herbal medicines and chronic kidney disease. Nephrology (Carlton, Vic.), 15(Suppl 2), 10–17.CrossRefGoogle Scholar
  9. 9.
    But, P. P. H., Tomlinson, B., Cheung, K. O., et al. (1996). Adulterants of herbal products can cause poisoning. British Medical Journal, 313, 117.PubMedCrossRefGoogle Scholar
  10. 10.
    Zhu, Y. P. (2000). Toxicity of the Chinese herb mu tong (Aristolochia manshuriensis): What history tells us. Adverse Drug Reactions and Toxicological Reviews, 21, 171–177.Google Scholar
  11. 11.
    Zeng, Z. P., & Jiang, J. G. (2010). Analysis of the adverse reactions induced by natural product-derived drugs. British Journal of Pharmacology, 159, 1374–1391.PubMedCrossRefGoogle Scholar
  12. 12.
    CBOL Plant Working Group. (2009). A DNA barcode for land plants. Proceedings of the National Academy of Sciences of the United States of America, 106, 12794–12797.CrossRefGoogle Scholar
  13. 13.
    Chen, S., Yao, H., Han, J., et al. (2010). Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PloS One, 5, e8613.PubMedCrossRefGoogle Scholar
  14. 14.
    Hebert, P. D., Cywinska, A., Ball, S. L., et al. (2003). Biological identifications through DNA barcodes. Proceeding of the Royal Society B Biological Sciences, 270, 313–321.CrossRefGoogle Scholar
  15. 15.
    Kress, W. J., Wurdack, K. J., Zimmer, E. A., et al. (2005). Use of DNA barcodes to identify flowering plants. Proceedings of the National Academy of Sciences of the United States of America, 102, 8369–8374.PubMedCrossRefGoogle Scholar
  16. 16.
    Shaw, P. C., Jiang, R. W., & Wong, K. L. (2007). Health food and medicine: Combined chemical and molecular technologies for authentication and quality control. In S. E. Ebeler, G. R. Takeoka, & P. Winterhalter (Eds.), Authentication of food and wine. Washington, DC: American Chemical Society.Google Scholar
  17. 17.
    Shaw, P. C., Ngan, F. N., & But, P. P. H. (2002). Molecular markers in Chinese medicinal materials. In P. C. Shaw, J. Wang, & P. P. H. But (Eds.), Authentication of Chinese medicinal materials by DNA technology. Singapore: World Scientific.Google Scholar
  18. 18.
    Cheung, K. S., Kwan, H. S., But, P. P. H., et al. (1994). Pharmacognostical identification of American and Oriental ginseng roots by genomic fingerprinting using arbitrarily primed polymerase chain reaction (AP-PCR). Journal of Ethnopharmacology, 42, 67–69.PubMedCrossRefGoogle Scholar
  19. 19.
    Shaw, P. C., & But, P. P. H. (1995). Authentication of Panaxspecies and their adulterants by random-primed polymerase chain reaction. Planta Medica, 61, 466–469.PubMedCrossRefGoogle Scholar
  20. 20.
    Li, M., Ling, K. H., Lam, H., et al. (2010). Cardiocrinumseeds as a replacement for Aristolochiafruits in treating cough. Journal of Ethnopharmacology, 130, 429–432.PubMedCrossRefGoogle Scholar
  21. 21.
    Sasaki, Y., Komatsu, K., & Nagumo, S. (2008). Rapid detection of Panax ginsengby loop-mediated isothermal amplification and its application to authentication of ginseng. Biological and Pharmaceutical Bulletin, 31, 1806–1808.PubMedCrossRefGoogle Scholar
  22. 22.
    Welsh, J., & McClelland, M. (1990). Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research, 18, 7213–7218.PubMedCrossRefGoogle Scholar
  23. 23.
    Cao, H., But, P. P. H., & Shaw, P. C. (1996). Authentication of the Chinese drug ‘Ku-Di-Dan’ (Herba Elephantopi) and its substitutes using random-primed polymerase chain reaction (PCR). Acta Pharmaceutica Sinica, 31, 543–553.PubMedGoogle Scholar
  24. 24.
    Cao, H., But, P. P. H., & Shaw, P. C. (1996). A molecular approach to identification of the Chinese drug ‘pu gong ying’ (herba taraxaci) and six adulterants by DNA fingerprinting using random primed polymerase chain reaction (PCR). Journal of Chinene Pharmaceutical Sciences, 5, 186–194.Google Scholar
  25. 25.
    Zhang, Y. B., Ngan, F. N., Wang, Z. T., et al. (1999). Random primed polymerase chain reaction differentiates Codonopsis pilosulafrom different localities. Planta Medica, 65, 157–160.PubMedCrossRefGoogle Scholar
  26. 26.
    Williams, J. G., Kubelik, A. R., Livak, K. J., et al. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 18, 6531–6535.PubMedCrossRefGoogle Scholar
  27. 27.
    Fu, R. Z., Shaw, P. C., Wang, J., et al. (2000). RAPD differentiation of five medicinal Dysosmaspecies. Journal of Chinese Pharmaceutical Sciences, 9, 57–60.Google Scholar
  28. 28.
    Chatti, K., Baraket, G., Ben Abdelkrim, A., et al. (2010). Development of molecular tools for characterization and genetic diversity analysis in Tunisian fig (Ficus carica) cultivars. Biochemical Genetics, 48, 789–806.PubMedCrossRefGoogle Scholar
  29. 29.
    Li, Y., & Ding, W. L. (2010). Genetic diversity assessment of Trolliusaccessions in China by RAPD markers. Biochemical Genetics, 48, 34–43.PubMedCrossRefGoogle Scholar
  30. 30.
    Lim, W., Mudge, K. W., & Weston, L. A. (2007). Utilization of RAPD markers to assess genetic diversity of wild populations of North American ginseng (Panax quinquefolius). Planta Medica, 73, 71–76.PubMedCrossRefGoogle Scholar
  31. 31.
    Vos, P., Hogers, R., Bleeker, M., et al. (1995). AFLP: A new technique for DNA fingerprinting. Nucleic Acids Research, 23, 4407–4414.PubMedCrossRefGoogle Scholar
  32. 32.
    Ruselll, J. R., Fuller, J. D., Macaulay, M., et al. (1997). Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theoretical and Applied Genetics, 95, 714–722.CrossRefGoogle Scholar
  33. 33.
    Ha, W. Y., Yau, F. C. F., Shaw, P. C., et al. (2002). Differentiation of Panax ginsengfrom P. quinquefoliusby amplified fragment length polymorphism. In P. C. Shaw, J. Wang, & P. P. H. But (Eds.), Authentication of Chinese medicinal materials by DNA technology. Singapore: World Scientific.Google Scholar
  34. 34.
    Ha, W. Y., Shaw, P. C., Liu, J., et al. (2002). Authentication of Panax ginsengand Panax quinquefoliususing amplified fragment length polymorphism (AFLP) and directed amplification of minisatellite region DNA (DAMD). Journal of Agricultural and Food Chemistry, 50, 1871–1875.PubMedCrossRefGoogle Scholar
  35. 35.
    Choi, Y. E., Ahn, C. H., Kim, B. B., et al. (2008). Development of species specific AFLP-derived SCAR marker for authentication of Panax japonicusC. A. Meyer. Biological and Pharmaceutical Bulletin, 31, 135–138.PubMedCrossRefGoogle Scholar
  36. 36.
    Datwyler, S. L., & Weiblen, G. D. (2006). Genetic variation in hemp and marijuana (Cannabis sativaL.) according to amplified fragment length polymorphisms. Journal of Forensic Sciences, 51, 371–375.PubMedCrossRefGoogle Scholar
  37. 37.
    Passinho-Soares, H., Felix, D., Kaplan, M. A., et al. (2006). Authentication of medicinal plant botanical identity by amplified fragmented length polymorphism dominant DNA marker: inferences from the Plectranthusgenus. Planta Medica, 72, 929–931.PubMedCrossRefGoogle Scholar
  38. 38.
    Ha, W. Y., Yau, F. C., But, P. P. H., et al. (2001). Direct amplification of length polymorphism analysis differentiates Panax ginsengfrom P. quinquefolius. Planta Medica, 67, 587–589.PubMedCrossRefGoogle Scholar
  39. 39.
    Godwin, I. D., Aitken, E. A., & Smith, L. W. (1997). Application of inter simple sequence repeat (ISSR) markers to plant genetics. Electrophoresis, 18, 1524–1528.PubMedCrossRefGoogle Scholar
  40. 40.
    Su, C., Wong, K. L., But, P. P. H., et al. (2010). Molecular authentication of the Chinese Herb Huajuhong and related medicinal material by DNA sequencing and ISSR marker. Journal of Food and Drug Analysis, 18, 161–170.Google Scholar
  41. 41.
    Kojoma, M., Iida, O., Makino, Y., et al. (2002). DNA fingerprinting of Cannabis sativausing inter-simple sequence repeat (ISSR) amplification. Planta Medica, 68, 60–63.PubMedCrossRefGoogle Scholar
  42. 42.
    Shi, H. M., Wang, J., & Wang, M. Y. (2009). Identification of Cistanchespecies by chemical and inter-simple sequence repeat fingerprinting. Biological and Pharmaceutical Bulletin, 32, 142–146.PubMedCrossRefGoogle Scholar
  43. 43.
    Hu, Y., Zhang, Q., Xin, H., et al. (2007). Association between chemical and genetic variation of Vitex rotundifoliapopulations from different locations in China: Its implication for quality control of medicinal plants. Biomedical Chromatography, 21, 967–975.PubMedCrossRefGoogle Scholar
  44. 44.
    Song, Z., Li, X., Wang, H., et al. (2010). Genetic diversity and population structure of Salvia miltiorrhizaBge in China revealed by ISSR and SRAP. Genetica, 138, 241–249.PubMedCrossRefGoogle Scholar
  45. 45.
    Ngan, F. G., Shaw, P. C., But, P. P. H., et al. (1999). Molecular authentication of Panaxspecies. Phytochemistry, 50, 787–791.PubMedCrossRefGoogle Scholar
  46. 46.
    Fu, R. Z., Wang, J., Zhang, Y. B., et al. (1999). Differentiation of medicinal Codonopsisspecies from adulterants by polymerase chain reaction-restriction fragment length polymorphism. Planta Medica, 65, 648–650.PubMedCrossRefGoogle Scholar
  47. 47.
    Gong, W., Fu, C. X., Luo, Y. P., et al. (2006). Molecular identification of Sinopodophyllum hexandrumand Dysosmaspecies using cpDNA sequences and PCR-RFLP markers. Planta Medica, 72, 650–652.PubMedCrossRefGoogle Scholar
  48. 48.
    Lee, J. H., Lee, J. W., Sung, J. S., et al. (2009). Molecular authentication of 21 Korean Artemisiaspecies (Compositae) by polymerase chain reaction-restriction fragment length polymorphism based on trnL-F region of chloroplast DNA. Biological and Pharmaceutical Bulletin, 32, 1912–1916.PubMedCrossRefGoogle Scholar
  49. 49.
    Li, X., Ding, X., Chu, B., et al. (2007). Molecular authentication of Alisma orientaleby PCR-RFLP and ARMS. Planta Medica, 73, 67–70.PubMedCrossRefGoogle Scholar
  50. 50.
    Wang, J., Ha, W. Y., Ngan, F. N., et al. (2001). Application of sequence characterized amplified region (SCAR) analysis to authenticate Panaxspecies and their adulterants. Planta Medica, 67, 781–783.PubMedCrossRefGoogle Scholar
  51. 51.
    Yau, F. C. F., Wong, K. L., Shaw, P. C., et al. (2002). Authentication of snakes used in Chinese medicine by sequence characterized amplified region (SCAR). Biodiversity and Conservation, 11, 1653–1662.CrossRefGoogle Scholar
  52. 52.
    Yau, F. C. F., Wong, K. L., Wang, J., et al. (2002). Generation of a sequence characterized amplified region probe for authentication of Crocodilian species. The Journal of Experimental Zoology, 294, 382–386.PubMedCrossRefGoogle Scholar
  53. 53.
    Dnyaneshwar, W., Preeti, C., Kalpana, J., et al. (2006). Development and application of RAPD-SCAR marker for identification of Phyllanthus emblicaLinn. Biological and Pharmaceutical Bulletin, 29, 2313–2316.PubMedCrossRefGoogle Scholar
  54. 54.
    Lee, M. Y., Doh, E. J., Park, C. H., et al. (2006). Development of SCAR marker for discrimination of Artemisia princepsand A. argyifrom other Artemisiaherbs. Biological and Pharmaceutical Bulletin, 29, 629–633.PubMedCrossRefGoogle Scholar
  55. 55.
    Sze, S. C., Song, J. X., & Wong, R. N. (2008). Application of SCAR (sequence characterized amplified region) analysis to authenticate Lycium barbarum(wolfberry) and its adulterants. Biotechnology and Applied Biochemistry, 51, 15–21.PubMedCrossRefGoogle Scholar
  56. 56.
    Walker, G. T., Little, M. C., Nadeau, J. G., et al. (1992). Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system. Proceedings of the National Academy of Sciences of the United States of America, 89, 392–396.PubMedCrossRefGoogle Scholar
  57. 57.
    Walker, G. T., Fraiser, M. S., Schram, J. L., et al. (1992). Strand displacement amplification–an isothermal, in vitro DNA amplification technique. Nucleic Acids Research, 20, 1691–1696.PubMedCrossRefGoogle Scholar
  58. 58.
    Notomi, T., Okayama, H., Masubuchi, H., et al. (2000). Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 28, E63.PubMedCrossRefGoogle Scholar
  59. 59.
    Sasaki, Y., & Nagumo, S. (2007). Rapid identification of Curcuma longaand C. aromaticaby LAMP. Biological and Pharmaceutical Bulletin, 30, 2229–2230.PubMedCrossRefGoogle Scholar
  60. 60.
    Vincent, M., Xu, Y., & Kong, H. (2004). Helicase-dependent isothermal DNA amplification. EMBO Reports, 5, 795–800.PubMedCrossRefGoogle Scholar
  61. 61.
    Zhang, Y. B., Wang, J., Wang, Z. T., et al. (2003). DNA microarray for identification of the herb of Dendrobiumspecies from Chinese medicinal formulations. Planta Medica, 69, 1172–1174.PubMedCrossRefGoogle Scholar
  62. 62.
    Sze, S. C. W., Zhang, Y. B. K., Shaw, P. C., et al. (2008). A DNA microarray for differentiation of the Chinese medicinal herb Dendrobium officinale(Fengdou Shihu) by its 5S ribosomal DNA intergenic spacer region. Biotechnology and Applied Biochemistry, 49, 149–154.PubMedCrossRefGoogle Scholar
  63. 63.
    Cho, Y., Mower, J. P., Qiu, Y. L., et al. (2004). Mitochondrial substitution rates are extraordinarily elevated and variable in a genus of flowering plants. Proceedings of the National Academy of Sciences of the United States of America, 101, 17741–17746.PubMedCrossRefGoogle Scholar
  64. 64.
    Lau, D. T., Shaw, P. C., Wang, J., et al. (2001). Authentication of medicinal Dendrobiumspecies by the internal transcribed spacer of ribosomal DNA. Planta Medica, 67, 456–460.PubMedCrossRefGoogle Scholar
  65. 65.
    Chen, F., Chan, H. Y., Wong, K. L., et al. (2008). Authentication of Saussurea lappa, an endangered medicinal material, by ITS DNA and 5S rRNA sequencing. Planta Medica, 74, 889–892.PubMedCrossRefGoogle Scholar
  66. 66.
    Li, M., Jiang, R. W., Hon, P. M., et al. (2010). Authentication of the anti-tumor herb Baihuasheshecao with bioactive marker compounds and molecular sequences. Food Chemistry, 119, 1239–1245.CrossRefGoogle Scholar
  67. 67.
    Law, S. K. Y., Simmons, M. P., Techen, N., et al. (2011). Molecular analyses of the Chinese herb Leigongteng (Tripterygium wilfordiiHook.f.). Phytochemistry, 72, 21–26.PubMedCrossRefGoogle Scholar
  68. 68.
    He, J., Wong, K. L., Shaw, P. C., et al. (2010). Identification of the medicinal plants in Aconitum L. by DNA barcoding technique. Planta Medica, 76, 1622–1628.PubMedCrossRefGoogle Scholar
  69. 69.
    Zhang, Y. B., Jiang, R. W., Li, S. L., et al. (2007). Chemical and molecular characterization of Hong Dangshen, a unique medicinal material for diarrhea in Hong Kong. Journal of Chinese Pharmaceutical Sciences, 16, 202–207.Google Scholar
  70. 70.
    Yu, M. T., Wong, K. L., Zong, Y. Y., et al. (2008). Identification of Swertia mussotiiand its adulterant Swertiaspecies by 5S rRNA gene spacer. China Journal of Chinese Materia Medica, 33, 502–504.PubMedGoogle Scholar
  71. 71.
    Jiang, R. W., Hon, P. M., Xu, Y. T., et al. (2006). Isolation and chemotaxonomic significance of tuberostemospironine-type alkaloids from Stemona tuberosa. Phytochemistry, 67, 52–57.PubMedCrossRefGoogle Scholar
  72. 72.
    Bartlett, S. E., & Davidson, W. S. (1992). FINS (forensically informative nucleotide sequencing): A procedure for identifying the animal origin of biological specimens. BioTechniques, 12, 408–411.PubMedGoogle Scholar
  73. 73.
    Sahajpal, V., & Goyal, S. P. (2010). Identification of a forensic case using microscopy and forensically informative nucleotide sequencing (FINS): A case study of small Indian civet (Viverricula indica). Science & Justice, 50, 94–97.CrossRefGoogle Scholar
  74. 74.
    Lou, S. K., Wong, K. L., Li, M., et al. (2010). An integrated web medicinal materials DNA database: MMDBD (Medicinal Materials DNA Barcode Database). BMC Genomics, 11, 402.PubMedCrossRefGoogle Scholar
  75. 75.
    Wong, K. L., Wang, J., But, P. P. H., et al. (2004). Application of cytochrome b DNA sequences for the authentication of endangered snake species. Forensic Science International, 139, 49–55.PubMedCrossRefGoogle Scholar
  76. 76.
    Alvarez, I., & Wendel, J. F. (2003). Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetics and Evolution, 29, 417–434.PubMedCrossRefGoogle Scholar
  77. 77.
    Baldwin, B. G., Sanderson, M. J., Porter, J. M., et al. (1995). The ITS region of nuclear ribosomal DNA: A valuable source of evidence on angiosperm phylogeny. Annals of the Missouri Botanical Garden, 82, 247–277.CrossRefGoogle Scholar
  78. 78.
    Kress, W. J., & Erickson, D. L. (2007). A two-locus global DNA barcode for land plants: The coding rbcL gene complements the non-coding trnH-psbA spacer region. PloS One, 2, e508.PubMedCrossRefGoogle Scholar

Suggested Readings

  1. Lou, S. K., Wong, K. L., Li, M., But, P. P. H., Tsui, S. K., & Shaw, P. C. (2010). An integrated web medicinal materials DNA database: MMDBD (Medicinal Materials DNA Barcode Database). BMC Genomics, 11, 402.PubMedCrossRefGoogle Scholar
  2. Shaw, P. C., Wang, J., & But, P. P. H. (2002). Authentication of Chinese medicinal materials by DNA technology. Singapore: World Scientific.CrossRefGoogle Scholar
  3. Shaw, P. C., Jiang, R. W., Wong, K. L., & But, P. P. H. (2007). Health food and medicine: Combined chemical and molecular technologies for authentication and quality control. In S. E. Ebeler, G. R. Takeoka, & P. Winterhalter (Eds.), Authentication of food and wine. Washington, DC: American Chemical Society.Google Scholar
  4. Shaw, P. C., Wong, K. L., Chan, A. W., Wong, W. C., & But, P. P. H. (2009). Patent applications for using DNA technologies to authenticate medicinal herbal material. Chinese Medicine, 4, 21.PubMedCrossRefGoogle Scholar

Copyright information

© Shanghai Scientific and Technical Publishers and Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.State Key Laboratory of Phytochemistry and Plant Resources in West China (CUHK), Institute of Chinese MedicineThe Chinese University of Hong KongShatinHong Kong, P.R. China
  2. 2.School of Life SciencesThe Chinese University of Hong KongShatinHong Kong, P.R. China
  3. 3.State Key Laboratory of Phytochemistry and Plant Resources in West China (CUHK), Institute of Chinese Medicine, and School of Life Sciences, Rm. 180, Science CentreThe Chinese University of Hong KongShatinHong Kong, P.R. China

Personalised recommendations