Molecular Pharmacognosy pp 45-66 | Cite as
Molecular Identification of Traditional Medicinal Materials
Abstract
Traditional medicines are consumed by 80% of the population in the world for health maintenance and disease treatment. Adulteration and substitution of the source materials have been life-threatening problems growing along with their popularity. Consequently, a reliable identification method is important for safety and quality assurance of the traditional medicinal materials. Molecular techniques provide alternative means to conventional organoleptic and chemical authentication methods and are often more superior in accuracy, sensitivity, resolution and reproducibility. Since the early 1990s, a number of molecular techniques have been developed to identify traditional medicinal materials based on DNA fingerprinting (RFLP, AP-PCR, RAPD, AFLP, DALP, ISSR, PCR-RFLP, SCAR and isothermal amplification), DNA microarray and DNA sequencing (DNA barcoding and FINS). These techniques are capable of differentiating traditional medicinal materials and their adulterants and substitutes, and in some cases, distinguishing closely related species, subspecies, varieties, cultivars and species from different localities. This chapter introduces the major molecular identification techniques and reviews their applications in the identification of animal and botanical medicinal materials.
Keywords
Internal Transcribe Spacer Amplify Fragment Length Polymorphism Aristolochic Acid American Ginseng Medicinal MaterialReferences
- 1.World Health Organization. (2008). Traditional medicine. http://www.who.int/mediacentre/factsheets/fs134/en/. Dec 2008.
- 2.Vanherweghem, J., Tielemans, C., Abramowicz, D., et al. (1993). Rapidly progressive interstitial renal fibrosis in young women: Association with slimming regimen including Chinese herbs. Lancet, 341, 387–391.PubMedCrossRefGoogle Scholar
- 3.Vanhaelen, M., Vanhaelen-Fastre, R., But, P. P. H., et al. (1994). Identification of aristolochic acid in Chinese herbs. Lancet, 343, 174.PubMedCrossRefGoogle Scholar
- 4.But, P. P. H. (1994). Herbal poisoning caused by adulterants or erroneous substitutes. The Journal of Tropical Medicine and Hygiene, 97, 371–374.PubMedGoogle Scholar
- 5.Lee, S., Lee, T., Lee, B., et al. (2004). Fanconi’s syndrome and subsequent progressive renal failure caused by a Chinese herb containing aristolochic acid. Nephrology (Carlton, Vic.), 9, 126–129.CrossRefGoogle Scholar
- 6.Lo, S. H., Wong, K. S., Arlt, V. M., et al. (2005). Detection of Herba Aristolochia Mollissemae in a patient with unexplained nephropathy. American Journal of Kidney Diseases, 45, 407–410.PubMedCrossRefGoogle Scholar
- 7.Debelle, F. D., Vanherweghem, J. L., & Nortier, J. L. (2008). Aristolochic acid nephropathy: A worldwide problem. Kidney International, 74, 158–169.PubMedCrossRefGoogle Scholar
- 8.Jha, V. (2010). Herbal medicines and chronic kidney disease. Nephrology (Carlton, Vic.), 15(Suppl 2), 10–17.CrossRefGoogle Scholar
- 9.But, P. P. H., Tomlinson, B., Cheung, K. O., et al. (1996). Adulterants of herbal products can cause poisoning. British Medical Journal, 313, 117.PubMedCrossRefGoogle Scholar
- 10.Zhu, Y. P. (2000). Toxicity of the Chinese herb mu tong (Aristolochia manshuriensis): What history tells us. Adverse Drug Reactions and Toxicological Reviews, 21, 171–177.Google Scholar
- 11.Zeng, Z. P., & Jiang, J. G. (2010). Analysis of the adverse reactions induced by natural product-derived drugs. British Journal of Pharmacology, 159, 1374–1391.PubMedCrossRefGoogle Scholar
- 12.CBOL Plant Working Group. (2009). A DNA barcode for land plants. Proceedings of the National Academy of Sciences of the United States of America, 106, 12794–12797.CrossRefGoogle Scholar
- 13.Chen, S., Yao, H., Han, J., et al. (2010). Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PloS One, 5, e8613.PubMedCrossRefGoogle Scholar
- 14.Hebert, P. D., Cywinska, A., Ball, S. L., et al. (2003). Biological identifications through DNA barcodes. Proceeding of the Royal Society B Biological Sciences, 270, 313–321.CrossRefGoogle Scholar
- 15.Kress, W. J., Wurdack, K. J., Zimmer, E. A., et al. (2005). Use of DNA barcodes to identify flowering plants. Proceedings of the National Academy of Sciences of the United States of America, 102, 8369–8374.PubMedCrossRefGoogle Scholar
- 16.Shaw, P. C., Jiang, R. W., & Wong, K. L. (2007). Health food and medicine: Combined chemical and molecular technologies for authentication and quality control. In S. E. Ebeler, G. R. Takeoka, & P. Winterhalter (Eds.), Authentication of food and wine. Washington, DC: American Chemical Society.Google Scholar
- 17.Shaw, P. C., Ngan, F. N., & But, P. P. H. (2002). Molecular markers in Chinese medicinal materials. In P. C. Shaw, J. Wang, & P. P. H. But (Eds.), Authentication of Chinese medicinal materials by DNA technology. Singapore: World Scientific.Google Scholar
- 18.Cheung, K. S., Kwan, H. S., But, P. P. H., et al. (1994). Pharmacognostical identification of American and Oriental ginseng roots by genomic fingerprinting using arbitrarily primed polymerase chain reaction (AP-PCR). Journal of Ethnopharmacology, 42, 67–69.PubMedCrossRefGoogle Scholar
- 19.Shaw, P. C., & But, P. P. H. (1995). Authentication of Panaxspecies and their adulterants by random-primed polymerase chain reaction. Planta Medica, 61, 466–469.PubMedCrossRefGoogle Scholar
- 20.Li, M., Ling, K. H., Lam, H., et al. (2010). Cardiocrinumseeds as a replacement for Aristolochiafruits in treating cough. Journal of Ethnopharmacology, 130, 429–432.PubMedCrossRefGoogle Scholar
- 21.Sasaki, Y., Komatsu, K., & Nagumo, S. (2008). Rapid detection of Panax ginsengby loop-mediated isothermal amplification and its application to authentication of ginseng. Biological and Pharmaceutical Bulletin, 31, 1806–1808.PubMedCrossRefGoogle Scholar
- 22.Welsh, J., & McClelland, M. (1990). Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research, 18, 7213–7218.PubMedCrossRefGoogle Scholar
- 23.Cao, H., But, P. P. H., & Shaw, P. C. (1996). Authentication of the Chinese drug ‘Ku-Di-Dan’ (Herba Elephantopi) and its substitutes using random-primed polymerase chain reaction (PCR). Acta Pharmaceutica Sinica, 31, 543–553.PubMedGoogle Scholar
- 24.Cao, H., But, P. P. H., & Shaw, P. C. (1996). A molecular approach to identification of the Chinese drug ‘pu gong ying’ (herba taraxaci) and six adulterants by DNA fingerprinting using random primed polymerase chain reaction (PCR). Journal of Chinene Pharmaceutical Sciences, 5, 186–194.Google Scholar
- 25.Zhang, Y. B., Ngan, F. N., Wang, Z. T., et al. (1999). Random primed polymerase chain reaction differentiates Codonopsis pilosulafrom different localities. Planta Medica, 65, 157–160.PubMedCrossRefGoogle Scholar
- 26.Williams, J. G., Kubelik, A. R., Livak, K. J., et al. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 18, 6531–6535.PubMedCrossRefGoogle Scholar
- 27.Fu, R. Z., Shaw, P. C., Wang, J., et al. (2000). RAPD differentiation of five medicinal Dysosmaspecies. Journal of Chinese Pharmaceutical Sciences, 9, 57–60.Google Scholar
- 28.Chatti, K., Baraket, G., Ben Abdelkrim, A., et al. (2010). Development of molecular tools for characterization and genetic diversity analysis in Tunisian fig (Ficus carica) cultivars. Biochemical Genetics, 48, 789–806.PubMedCrossRefGoogle Scholar
- 29.Li, Y., & Ding, W. L. (2010). Genetic diversity assessment of Trolliusaccessions in China by RAPD markers. Biochemical Genetics, 48, 34–43.PubMedCrossRefGoogle Scholar
- 30.Lim, W., Mudge, K. W., & Weston, L. A. (2007). Utilization of RAPD markers to assess genetic diversity of wild populations of North American ginseng (Panax quinquefolius). Planta Medica, 73, 71–76.PubMedCrossRefGoogle Scholar
- 31.Vos, P., Hogers, R., Bleeker, M., et al. (1995). AFLP: A new technique for DNA fingerprinting. Nucleic Acids Research, 23, 4407–4414.PubMedCrossRefGoogle Scholar
- 32.Ruselll, J. R., Fuller, J. D., Macaulay, M., et al. (1997). Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theoretical and Applied Genetics, 95, 714–722.CrossRefGoogle Scholar
- 33.Ha, W. Y., Yau, F. C. F., Shaw, P. C., et al. (2002). Differentiation of Panax ginsengfrom P. quinquefoliusby amplified fragment length polymorphism. In P. C. Shaw, J. Wang, & P. P. H. But (Eds.), Authentication of Chinese medicinal materials by DNA technology. Singapore: World Scientific.Google Scholar
- 34.Ha, W. Y., Shaw, P. C., Liu, J., et al. (2002). Authentication of Panax ginsengand Panax quinquefoliususing amplified fragment length polymorphism (AFLP) and directed amplification of minisatellite region DNA (DAMD). Journal of Agricultural and Food Chemistry, 50, 1871–1875.PubMedCrossRefGoogle Scholar
- 35.Choi, Y. E., Ahn, C. H., Kim, B. B., et al. (2008). Development of species specific AFLP-derived SCAR marker for authentication of Panax japonicusC. A. Meyer. Biological and Pharmaceutical Bulletin, 31, 135–138.PubMedCrossRefGoogle Scholar
- 36.Datwyler, S. L., & Weiblen, G. D. (2006). Genetic variation in hemp and marijuana (Cannabis sativaL.) according to amplified fragment length polymorphisms. Journal of Forensic Sciences, 51, 371–375.PubMedCrossRefGoogle Scholar
- 37.Passinho-Soares, H., Felix, D., Kaplan, M. A., et al. (2006). Authentication of medicinal plant botanical identity by amplified fragmented length polymorphism dominant DNA marker: inferences from the Plectranthusgenus. Planta Medica, 72, 929–931.PubMedCrossRefGoogle Scholar
- 38.Ha, W. Y., Yau, F. C., But, P. P. H., et al. (2001). Direct amplification of length polymorphism analysis differentiates Panax ginsengfrom P. quinquefolius. Planta Medica, 67, 587–589.PubMedCrossRefGoogle Scholar
- 39.Godwin, I. D., Aitken, E. A., & Smith, L. W. (1997). Application of inter simple sequence repeat (ISSR) markers to plant genetics. Electrophoresis, 18, 1524–1528.PubMedCrossRefGoogle Scholar
- 40.Su, C., Wong, K. L., But, P. P. H., et al. (2010). Molecular authentication of the Chinese Herb Huajuhong and related medicinal material by DNA sequencing and ISSR marker. Journal of Food and Drug Analysis, 18, 161–170.Google Scholar
- 41.Kojoma, M., Iida, O., Makino, Y., et al. (2002). DNA fingerprinting of Cannabis sativausing inter-simple sequence repeat (ISSR) amplification. Planta Medica, 68, 60–63.PubMedCrossRefGoogle Scholar
- 42.Shi, H. M., Wang, J., & Wang, M. Y. (2009). Identification of Cistanchespecies by chemical and inter-simple sequence repeat fingerprinting. Biological and Pharmaceutical Bulletin, 32, 142–146.PubMedCrossRefGoogle Scholar
- 43.Hu, Y., Zhang, Q., Xin, H., et al. (2007). Association between chemical and genetic variation of Vitex rotundifoliapopulations from different locations in China: Its implication for quality control of medicinal plants. Biomedical Chromatography, 21, 967–975.PubMedCrossRefGoogle Scholar
- 44.Song, Z., Li, X., Wang, H., et al. (2010). Genetic diversity and population structure of Salvia miltiorrhizaBge in China revealed by ISSR and SRAP. Genetica, 138, 241–249.PubMedCrossRefGoogle Scholar
- 45.Ngan, F. G., Shaw, P. C., But, P. P. H., et al. (1999). Molecular authentication of Panaxspecies. Phytochemistry, 50, 787–791.PubMedCrossRefGoogle Scholar
- 46.Fu, R. Z., Wang, J., Zhang, Y. B., et al. (1999). Differentiation of medicinal Codonopsisspecies from adulterants by polymerase chain reaction-restriction fragment length polymorphism. Planta Medica, 65, 648–650.PubMedCrossRefGoogle Scholar
- 47.Gong, W., Fu, C. X., Luo, Y. P., et al. (2006). Molecular identification of Sinopodophyllum hexandrumand Dysosmaspecies using cpDNA sequences and PCR-RFLP markers. Planta Medica, 72, 650–652.PubMedCrossRefGoogle Scholar
- 48.Lee, J. H., Lee, J. W., Sung, J. S., et al. (2009). Molecular authentication of 21 Korean Artemisiaspecies (Compositae) by polymerase chain reaction-restriction fragment length polymorphism based on trnL-F region of chloroplast DNA. Biological and Pharmaceutical Bulletin, 32, 1912–1916.PubMedCrossRefGoogle Scholar
- 49.Li, X., Ding, X., Chu, B., et al. (2007). Molecular authentication of Alisma orientaleby PCR-RFLP and ARMS. Planta Medica, 73, 67–70.PubMedCrossRefGoogle Scholar
- 50.Wang, J., Ha, W. Y., Ngan, F. N., et al. (2001). Application of sequence characterized amplified region (SCAR) analysis to authenticate Panaxspecies and their adulterants. Planta Medica, 67, 781–783.PubMedCrossRefGoogle Scholar
- 51.Yau, F. C. F., Wong, K. L., Shaw, P. C., et al. (2002). Authentication of snakes used in Chinese medicine by sequence characterized amplified region (SCAR). Biodiversity and Conservation, 11, 1653–1662.CrossRefGoogle Scholar
- 52.Yau, F. C. F., Wong, K. L., Wang, J., et al. (2002). Generation of a sequence characterized amplified region probe for authentication of Crocodilian species. The Journal of Experimental Zoology, 294, 382–386.PubMedCrossRefGoogle Scholar
- 53.Dnyaneshwar, W., Preeti, C., Kalpana, J., et al. (2006). Development and application of RAPD-SCAR marker for identification of Phyllanthus emblicaLinn. Biological and Pharmaceutical Bulletin, 29, 2313–2316.PubMedCrossRefGoogle Scholar
- 54.Lee, M. Y., Doh, E. J., Park, C. H., et al. (2006). Development of SCAR marker for discrimination of Artemisia princepsand A. argyifrom other Artemisiaherbs. Biological and Pharmaceutical Bulletin, 29, 629–633.PubMedCrossRefGoogle Scholar
- 55.Sze, S. C., Song, J. X., & Wong, R. N. (2008). Application of SCAR (sequence characterized amplified region) analysis to authenticate Lycium barbarum(wolfberry) and its adulterants. Biotechnology and Applied Biochemistry, 51, 15–21.PubMedCrossRefGoogle Scholar
- 56.Walker, G. T., Little, M. C., Nadeau, J. G., et al. (1992). Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system. Proceedings of the National Academy of Sciences of the United States of America, 89, 392–396.PubMedCrossRefGoogle Scholar
- 57.Walker, G. T., Fraiser, M. S., Schram, J. L., et al. (1992). Strand displacement amplification–an isothermal, in vitro DNA amplification technique. Nucleic Acids Research, 20, 1691–1696.PubMedCrossRefGoogle Scholar
- 58.Notomi, T., Okayama, H., Masubuchi, H., et al. (2000). Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 28, E63.PubMedCrossRefGoogle Scholar
- 59.Sasaki, Y., & Nagumo, S. (2007). Rapid identification of Curcuma longaand C. aromaticaby LAMP. Biological and Pharmaceutical Bulletin, 30, 2229–2230.PubMedCrossRefGoogle Scholar
- 60.Vincent, M., Xu, Y., & Kong, H. (2004). Helicase-dependent isothermal DNA amplification. EMBO Reports, 5, 795–800.PubMedCrossRefGoogle Scholar
- 61.Zhang, Y. B., Wang, J., Wang, Z. T., et al. (2003). DNA microarray for identification of the herb of Dendrobiumspecies from Chinese medicinal formulations. Planta Medica, 69, 1172–1174.PubMedCrossRefGoogle Scholar
- 62.Sze, S. C. W., Zhang, Y. B. K., Shaw, P. C., et al. (2008). A DNA microarray for differentiation of the Chinese medicinal herb Dendrobium officinale(Fengdou Shihu) by its 5S ribosomal DNA intergenic spacer region. Biotechnology and Applied Biochemistry, 49, 149–154.PubMedCrossRefGoogle Scholar
- 63.Cho, Y., Mower, J. P., Qiu, Y. L., et al. (2004). Mitochondrial substitution rates are extraordinarily elevated and variable in a genus of flowering plants. Proceedings of the National Academy of Sciences of the United States of America, 101, 17741–17746.PubMedCrossRefGoogle Scholar
- 64.Lau, D. T., Shaw, P. C., Wang, J., et al. (2001). Authentication of medicinal Dendrobiumspecies by the internal transcribed spacer of ribosomal DNA. Planta Medica, 67, 456–460.PubMedCrossRefGoogle Scholar
- 65.Chen, F., Chan, H. Y., Wong, K. L., et al. (2008). Authentication of Saussurea lappa, an endangered medicinal material, by ITS DNA and 5S rRNA sequencing. Planta Medica, 74, 889–892.PubMedCrossRefGoogle Scholar
- 66.Li, M., Jiang, R. W., Hon, P. M., et al. (2010). Authentication of the anti-tumor herb Baihuasheshecao with bioactive marker compounds and molecular sequences. Food Chemistry, 119, 1239–1245.CrossRefGoogle Scholar
- 67.Law, S. K. Y., Simmons, M. P., Techen, N., et al. (2011). Molecular analyses of the Chinese herb Leigongteng (Tripterygium wilfordiiHook.f.). Phytochemistry, 72, 21–26.PubMedCrossRefGoogle Scholar
- 68.He, J., Wong, K. L., Shaw, P. C., et al. (2010). Identification of the medicinal plants in Aconitum L. by DNA barcoding technique. Planta Medica, 76, 1622–1628.PubMedCrossRefGoogle Scholar
- 69.Zhang, Y. B., Jiang, R. W., Li, S. L., et al. (2007). Chemical and molecular characterization of Hong Dangshen, a unique medicinal material for diarrhea in Hong Kong. Journal of Chinese Pharmaceutical Sciences, 16, 202–207.Google Scholar
- 70.Yu, M. T., Wong, K. L., Zong, Y. Y., et al. (2008). Identification of Swertia mussotiiand its adulterant Swertiaspecies by 5S rRNA gene spacer. China Journal of Chinese Materia Medica, 33, 502–504.PubMedGoogle Scholar
- 71.Jiang, R. W., Hon, P. M., Xu, Y. T., et al. (2006). Isolation and chemotaxonomic significance of tuberostemospironine-type alkaloids from Stemona tuberosa. Phytochemistry, 67, 52–57.PubMedCrossRefGoogle Scholar
- 72.Bartlett, S. E., & Davidson, W. S. (1992). FINS (forensically informative nucleotide sequencing): A procedure for identifying the animal origin of biological specimens. BioTechniques, 12, 408–411.PubMedGoogle Scholar
- 73.Sahajpal, V., & Goyal, S. P. (2010). Identification of a forensic case using microscopy and forensically informative nucleotide sequencing (FINS): A case study of small Indian civet (Viverricula indica). Science & Justice, 50, 94–97.CrossRefGoogle Scholar
- 74.Lou, S. K., Wong, K. L., Li, M., et al. (2010). An integrated web medicinal materials DNA database: MMDBD (Medicinal Materials DNA Barcode Database). BMC Genomics, 11, 402.PubMedCrossRefGoogle Scholar
- 75.Wong, K. L., Wang, J., But, P. P. H., et al. (2004). Application of cytochrome b DNA sequences for the authentication of endangered snake species. Forensic Science International, 139, 49–55.PubMedCrossRefGoogle Scholar
- 76.Alvarez, I., & Wendel, J. F. (2003). Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetics and Evolution, 29, 417–434.PubMedCrossRefGoogle Scholar
- 77.Baldwin, B. G., Sanderson, M. J., Porter, J. M., et al. (1995). The ITS region of nuclear ribosomal DNA: A valuable source of evidence on angiosperm phylogeny. Annals of the Missouri Botanical Garden, 82, 247–277.CrossRefGoogle Scholar
- 78.Kress, W. J., & Erickson, D. L. (2007). A two-locus global DNA barcode for land plants: The coding rbcL gene complements the non-coding trnH-psbA spacer region. PloS One, 2, e508.PubMedCrossRefGoogle Scholar
Suggested Readings
- Lou, S. K., Wong, K. L., Li, M., But, P. P. H., Tsui, S. K., & Shaw, P. C. (2010). An integrated web medicinal materials DNA database: MMDBD (Medicinal Materials DNA Barcode Database). BMC Genomics, 11, 402.PubMedCrossRefGoogle Scholar
- Shaw, P. C., Wang, J., & But, P. P. H. (2002). Authentication of Chinese medicinal materials by DNA technology. Singapore: World Scientific.CrossRefGoogle Scholar
- Shaw, P. C., Jiang, R. W., Wong, K. L., & But, P. P. H. (2007). Health food and medicine: Combined chemical and molecular technologies for authentication and quality control. In S. E. Ebeler, G. R. Takeoka, & P. Winterhalter (Eds.), Authentication of food and wine. Washington, DC: American Chemical Society.Google Scholar
- Shaw, P. C., Wong, K. L., Chan, A. W., Wong, W. C., & But, P. P. H. (2009). Patent applications for using DNA technologies to authenticate medicinal herbal material. Chinese Medicine, 4, 21.PubMedCrossRefGoogle Scholar