Skip to main content

Methodology

  • Chapter
  • First Online:
Molecular Pharmacognosy
  • 1652 Accesses

Abstract

This chapter mainly introduces the development of methods and techniques involved in pharmacognosy and molecular pharmacognosy. Firstly, ideas and principles of methodology of molecular pharmacognosy study are introduced in this chapter. Of them, some of new theories like “pharmaphylogeny” and new methods like “ingredient difference phenotypic cloning” are firstly introduced in integrity together. Secondly, study objects and problems involved in molecular pharmacognosy are prominently introduced in this chapter. Finally, technologies often used and examples of the study are also briefly introduced.

From this chapter, we could understand thoroughly the theories, study objects, and usual methods of molecular pharmacognosy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang, L. Q. (2000). Molecular pharmacognosy. Beijing: Beijing Medical University Press.

    Google Scholar 

  2. Chen, S. B., Peng, Y., Chen, S. L., et al. (2005). Introduction of pharmaphylogeny. World Science and Technology Modernization Traditional Chinese Medicine, 7(6), 97–103.

    Google Scholar 

  3. Wang, X. Y., Cui, G. H., & Gao, W. (2009). New method of “ingredient difference phonetypical cloning” for functional gene cloning from medicinal plants. China Journal of Chinese Materia Medica, 34(1), 40–44.

    CAS  Google Scholar 

  4. Zhao, J., Davis, L. C., & Verpoorte, R. (2005). Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology Advances, 23, 283–333.

    Article  PubMed  CAS  Google Scholar 

  5. Chen, X. Y. (2006). Plant secondary metabolism. World Sci-Tech R&D, 28(5), 1–4.

    Google Scholar 

  6. Kitano, H. (2002). Foundations of systems biology, chapter systems biology: Toward system-level understanding of biological systems. Cambridge, MA: MIT Press.

    Google Scholar 

  7. Hood, L., Heath, J. R., Phelps, M. E., et al. (2004). Systems biology and new technologies enable predictive and preventative medicine. Science, 306(5696), 640–643.

    Article  PubMed  CAS  Google Scholar 

  8. Oksman-Caldentey, Kirsi-Marja, Inze, Dirk, & Oresic, Matej. (2004). Connecting genes to metabolites by a systems biology approach. Proceeding of the National Academy of Sciences of the United States of America, 101(27), 9949–9950.

    Article  CAS  Google Scholar 

  9. Kong, C. H., Xu, T., Hu, F., et al. (2000). A helopathy under environmental stress and its induced mechanism. Acta Ecologica Sinica, 20(5), 849–854.

    Google Scholar 

  10. Herms, D. A., & Mattson, W. J. (1992). The dilemma of plants: To grow or to defend. Quarterly Review Biology, 67, 283–335.

    Article  Google Scholar 

  11. Rosenthal, G. A., & Janzen, D. H. (1979). Variable plants and herbivores in natural and managed systems. New York: Academic.

    Google Scholar 

  12. Coley, P. D., Brant, J. P., & Chapin, F. S. (1985). Resource availability and plant antiherbivore defense. Science, 230, 895–899.

    Article  PubMed  CAS  Google Scholar 

  13. Liu, H. L. (2009). Systems biology: Trending to holism. Journal of Systems Sciences, 17(1), 46–92.

    CAS  Google Scholar 

  14. Liu, C. X. (2006). Systems biology and modern research of traditional Chinese medicines. Journal of Tianjin University of Traditional Chinese Medicine, 25(3), 115–118.

    CAS  Google Scholar 

  15. Aderem, A. (2005). Systems biology: Its practice and challenges. Cell, 121(4), 511–513.

    Article  PubMed  CAS  Google Scholar 

  16. Rensink, W. A., & Buell, C. R. (2005). Microarray expression profiling resources for plant genomics. Trends in Plant Science, 10(12), 603–609.

    Article  PubMed  CAS  Google Scholar 

  17. Marnik, V., Johan, D. P., Michiel, J. T., & van Eijk, M. J. (2007). AFLP-based transcript profiling (cDNA-AFLP) for genome-wide expression analysis. Nature Protocols, 2(6), 1399–1413.

    Article  CAS  Google Scholar 

  18. Sultan, M., Schulz, M. H., Richard, H., et al. (2008). A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science, 321(5891), 956–960.

    Article  PubMed  CAS  Google Scholar 

  19. Jia, W., Jiang, J., Liu, P., et al. (2006). Application of metabonomics in complicated theory system research of traditional Chinese medicine. China Journal of Chinese Materia Medica, 31(8), 621–624.

    PubMed  Google Scholar 

  20. Qi, L. W., Li, P., & Zhao, J. (2006). Metabonomics and modernization of TCM research. World Science and Technology, 8(6), 79–86.

    Google Scholar 

  21. Sumner, L. W., Mendes, P., & Dixon, R. A. (2003). Plant metabolomics: Large-scale phytochemistry in the functional genomics era. Phytochemistry, 62(6), 817–836.

    Article  PubMed  CAS  Google Scholar 

  22. Cui, G. H., Huang, L. Q., Tang, X. J., et al. (2007). Functional genomics studies of Salvia miltiorrhizaestablish cDNA microarray of S. miltiorrhiza. China Journal of Chinese Materia Medica, 32(12), 1137–1141.

    PubMed  CAS  Google Scholar 

  23. Gao, W., Cui, G. H., Kong, J. Q., et al. (2008). Optimizing expression and purification of recombinant Salvia miltiorrhizacopalyl diphosphate synthase protein in E. coliand preparation of rabbit antiserum against SmCPS. Acta Pharmaceutica Sinica, 43(7), 766–772.

    PubMed  CAS  Google Scholar 

  24. Wang, X. Y., Cui, G. H., Huang, L. Q., et al. (2008). A full length cDNA of 4-(cytidine 5′-diphospho)-2-C-methyl-D-erythritol kinase cloning and analysis of introduced gene expression in Salvia miltiorrhiza. Acta Pharmaceutica Sinica, 43(12), 1251–1257.

    PubMed  CAS  Google Scholar 

  25. Gao, W., Hillwig, M. L., Huang, L. Q., et al. (2009). A functional genomics approach to tanshinone biosynthesis provides stereochemical insights. Organic Letters, 11(22), 5170–5173.

    Article  PubMed  CAS  Google Scholar 

  26. Xu, M. J. (2007). Nitric oxide: The possible key factor of secondary metabolism signal transduction network of plant cells. Progress in Natural Science, 17(12), 1622–1630.

    Google Scholar 

  27. Xu, M., Dong, J., Wang, H., et al. (2009). Complementary action of jasmonic acid on salicylic acid in mediating fungal elicitor-induced flavonol glycoside accumulation of Ginkgo biloba cells[J]. Plant, Cell & Environment, 32(8), 960–967.

    Article  CAS  Google Scholar 

  28. Xia, L. J. (2008). Interaction between nitric oxide and hydrogen peroxide signaling in UV-B-induced flavonoid accumulation of Hypericum perforatum cells. Dissertation, Zhejiang Gongshang University.

    Google Scholar 

  29. Hiroaki, K. (2002). Systems biology: A brief overview. Science, 295, 1662–1664.

    Article  Google Scholar 

  30. Jeyaramraja, P. R., Pius, P. K., Raj Kumar, R., et al. (2003). Soil moisture stress induced alterations in bioconstituents determining tea quality. Journal of the Science of Food and Agriculture, 83(12), 1187–1191.

    Article  CAS  Google Scholar 

  31. Clark, R., & Menary, R. (1980). The effect of irrigation and nutrient on the yield and composition of peppermint oil. Australian Journal of Agricultural Research, 31, 489–498.

    Article  CAS  Google Scholar 

  32. Li, X., Wang, Y., & Yan, X. F. (2007). Effects of water stress on berberine, jatrorrhizine and palmatine contents in amur cork tree seedlings. Acta Ecologica Sinica, 27(1), 58–64.

    Article  CAS  Google Scholar 

  33. Zheng, Q. S., Liu, L., Liu, Y. L., et al. (2003). Effects of salt and water stresses on osmotic adjustment and osmotica accumulation in Aloe veraseedlings. Journal of Plant Physiology and Molecular Biology, 29(6), 585–588.

    Google Scholar 

  34. Yan, X. F. (2001). Ecology of plant secondary metabolism. Acta Phytoecology Sinica, 25(5), 639–640.

    Google Scholar 

  35. Zhang, L., Ding, R., & Chai, Y. E. T. A. L. (2004). Engineering tropane biosynthetic pathway in Hyoscyamus niger hairy root cultures. Proceeding of the National Academy of Sciences of the United States of America, 101(17), 6786–6791.

    Article  CAS  Google Scholar 

  36. Dae-Kyun, R., Eric, M. P., Mario, O., et al. (2006). Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature, 440(7086), 940–943.

    Article  CAS  Google Scholar 

  37. Allen, R. S., et al. (2004). RNAi-mediated replacement of morphine with the nonnarcotic alkaloid reticuline in opium poppy. Nature Biotechnology, 22(12), 1559–1566.

    Article  PubMed  CAS  Google Scholar 

  38. Dixon, R. A. (2005). Engineering of plant natural product pathways. Current Opinion in Plant Biology, 8, 329–336.

    Article  PubMed  CAS  Google Scholar 

  39. Huang, L. Q. (2011). Research strategy on molecular identification of animal medical material. China Journal of Chinese Materia Medica, 36(3), 234–236.

    PubMed  Google Scholar 

  40. Yip, P. Y., Chau, C. F., Mak, C. Y., et al. (2007). DNA methods for identification of Chinese medicinal materials. Chinese Medicine, 2, 9.

    Article  PubMed  CAS  Google Scholar 

  41. Lockley, A. K., & Bardsley, R. G. (2000). DNA-based methods for food authentication. Trends in Food Science and Technology, 11, 67–77.

    Article  CAS  Google Scholar 

  42. Dong, T. T., Ma, X. Q., Clarke, C., et al. (2003). Phylogeny of Astragalusin China: Molecular evidence from the DNA sequences of 5 S rRNA spacer, ITS, and 18S Rrna. Journal of Agricultural and Food Chemistry, 51, 6709–6714.

    Article  PubMed  CAS  Google Scholar 

  43. Ge, X. C., & Wu, J. Y. (2005). Tanshinone production and isoprenoid pathways in Salvia miltiorrhizahairy roots induced by Ag+and yeast elicitor. Plant Science, 168, 487–491.

    Article  CAS  Google Scholar 

  44. Shi, Y. H., Zhu, S. W., Mao, X. Z., et al. (2006). Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. The Plant Cell, 18(3), 651–664.

    Article  PubMed  CAS  Google Scholar 

  45. Hihara, Y., Kamei, A., Kanehisa, M., et al. (2001). DNA microarray analysis of cyanobacterial gene expression during acclimation to high light. The Plant Cell, 13(4), 793–806.

    PubMed  CAS  Google Scholar 

  46. Kanehisa, M., Goto, S., Hattori, M., et al. (2006). From genomics to chemical genomics: New developments in KEGG. Nucleic Acid Research, 34, D354–D357.

    Article  CAS  Google Scholar 

  47. Wang, X. Y., Cui, G. H., Huang, L. Q., et al. (2007). Effect of elicitor on tanshinones’ accumulation in hairy root of Salvia miltiorrhiza. China Journal of Chinese Materia Medica, 32(10), 976–978.

    CAS  Google Scholar 

  48. Cheung, K. S., Kwan, H. S., But, P. P. H., et al. (1994). Pharmacognostical identification of American and Oriental ginseng roots by genomic fingerprinting using arbitrarily primed polymerase chain reaction (AP-PCR). Journal of Ethnopharmacology, 42, 67–69.

    Article  PubMed  CAS  Google Scholar 

  49. Artiukova, E. V., Kozyrenko, M. M., Reunova, G. D., et al. (2000). Analysis of genomic variability of planted Panax ginsengby RAPD. Molecular Biology (Mosk), 34, 339–344.

    CAS  Google Scholar 

  50. Um, J. Y., Chung, H. K., Kim, M. S., et al. (2001). Molecular authentication of Panax ginsengspecies by RAPD analysis and PCR-RFLP. Biological and Pharmaceutical Bulletin, 24, 872–875.

    Article  PubMed  CAS  Google Scholar 

  51. Yukiko, T. K., Isao, A., & Ichio, I. A. (2001). Random amplified polymorphic DNA (RAPD) primer to assist the identification of a selected strain, aizu K-111 of Panax ginsengand the sequence amplified. Biological and Pharmaceutical Bulletin, 24, 1210–1213.

    Article  Google Scholar 

  52. Cui, X. M., Lo, C. K., Yip, K. L., et al. (2003). Authentication of Panax notoginsengby 5S-rRNA spacer domain and random amplified polymorphic DNA (RAPD) analysis. Planta Medica, 69, 584–586.

    Article  PubMed  CAS  Google Scholar 

  53. Shim, Y. H., Choi, J. H., Park, C. D., et al. (2003). Molecular differentiation of Panaxspecies by RAPD analysis. Archives of Pharmacal Research, 26, 601–605.

    Article  PubMed  CAS  Google Scholar 

  54. Hong, G. K., Yong, S., & Jae, E. C. (1997). The physical map of the chloroplast DNA from Korean ginseng (Panax ginsengC.A. Meyer). Molecules and Cells, 7, 136–139.

    Google Scholar 

  55. Andrew, C. C., Michael, K. B., Patricia, A. M., et al. (2004). Phylogeny of Panaxusing chloroplast trnC-trnD intergenic region and the utility of trnC-trnD in interspecific studies of plants. Molecular Phylogenetics and Evolution, 31, 894–903.

    Article  CAS  Google Scholar 

  56. Shim, Y. H., Park, C. D., Kimdo, H., et al. (2005). Identification of Panaxspecies in the herbal medicine preparations using gradient PCR method. Biological and Pharmaceutical Bulletin, 28, 671–676.

    Article  PubMed  CAS  Google Scholar 

  57. Fushimi, H., Komatsu, K., Isobe, M., et al. (1997). Application of PCR-RFLP and MASA analyses on 18S ribosomal RNA gene sequence for the identification of three Ginseng drugs. Biological and Pharmaceutical Bulletin, 20, 765–769.

    Article  PubMed  CAS  Google Scholar 

  58. Ha, W. Y., Shaw, P. C., Liu, J., et al. (2002). Authentication of Panax ginsengand Panax quinquefoliususing amplified fragment length polymorphism (AFLP) and directed amplification of minisatellite region DNA (DAMD). Journal of Agricultural and Food Chemistry, 50, 1871–1875.

    Article  PubMed  CAS  Google Scholar 

  59. Wang, J., Ha, W. Y., Ngan, F. N., et al. (2001). Application of sequence characterized amplified region (SCAR) analysis to authenticate Panax species and their adulterants. Planta Medica, 67, 781–783.

    Article  PubMed  CAS  Google Scholar 

  60. Zhu, S., Fushimi, H., Cai, S. Q., et al. (2004). Species identification from Ginseng drugs by multiplex amplification refractory mutation system (MARMS). Planta Medica, 70, 189–192.

    Article  PubMed  CAS  Google Scholar 

  61. Leung, O. C., Ho, I. S. H., & Leung, F. C. C. (2002). Isolation and characterization of repetitive DNA sequences from Panax ginseng.Molecular Genetics and Genomics, 266, 951–961.

    Article  PubMed  CAS  Google Scholar 

  62. Cui, G. H., Tang, X. J., & Huang, L. Q. (2006). DNA isolation from starch and polysaccharide-rich plants. China Journal of Chinese Materia Medica, 3, 1365–1367.

    Google Scholar 

  63. Huang, L. Q., Yue, Z. X., Yang, B., et al. (1999). Systematic study of Trichosanthes L. Journal of Jiangxi University of Traditional Chinese Medicine, 11, 75–78.

    Google Scholar 

  64. Huang, L. Q. (2004). Systemic study on the germplasm resources of Dahurian angelica. Journal of Jiangxi University of Traditional Chinese Medicine, 16, 5–7.

    CAS  Google Scholar 

  65. Feng, C. Q., Huang, L. Q., Liu, C., et al. (2005). Study on Radax Trichosanthis identification using protein immunization detection technology. Chinese Pharmaceutical Journal, 8, 574–577.

    Google Scholar 

  66. Huang, L. Q., Wang, M., Yang, B., et al. (1999). Authentication of the Chinese drug tian-hua-en (RadixTrichosanthes) and its adulterants and substitutes using random amplified polymorphicDNA (RAPD). Chinese Journal of Pharmaceutical Analysis, 19, 233–238.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu-qi Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Shanghai Scientific and Technical Publishers and Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Huang, Lq., Wang, Xy., Gao, W., Kondo, K. (2013). Methodology. In: Huang, Lq. (eds) Molecular Pharmacognosy. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4945-0_2

Download citation

Publish with us

Policies and ethics