Skip to main content

Hospital Wastewaters: Quali-Quantitative Characterization and for Strategies for Their Treatment and Disposal

  • Chapter
  • First Online:
Wastewater Reuse and Management

Abstract

Hospital wastewaters comprise the effluents of various services: general (kitchen, internal laundry, heating and cooling systems), diagnostic (laboratories, radiology departments, outpatient departments, transfusion centres) and wards (general medicine, surgery, specialities, haemodialysis, etc.). Due to the nature and quantity of the micropollutants they harbour, such as active substances of medicines and their metabolites, chemicals, heavy metals, disinfectants, sterilizers and radioactive markers, which are typically present at concentrations of μg L−1, they should be earmarked for special consideration. By law, however, hospital effluents are often considered to be in the same pollutant class as urban wastewaters and so are generally discharged into (municipal) sewage networks, collected at a wastewater treatment plant and co-treated along with them.

However, although dilution of hospital effluents with urban wastewaters usually results in a reduction of the pharmaceutical compound content in the final effluent (from μg L−1 to ng L−1), it does not affect the total load, that is, the quantity released daily into the receiving water body.

This chapter analyses the differences between the effluent of hospitals and urban settlements in terms of hydraulic and pollutant load, discusses whether distinction should be made between these two types of wastewaters and evaluates potential strategies for management of hospital effluents (co-treatment or dedicated strategies). Finally, it presents and discusses the most appropriate treatment for hospital wastewaters, based on the results of the recent research into the removal of pharmaceutical compounds from wastewaters.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-94-007-4942-9_18

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yu JT, Bouwer EJ, Coelhan M (2006) Occurrence and biodegradability studies of selected pharmaceuticals and personal care products in sewage effluent. Agric Water Manag 86:72–80

    Article  Google Scholar 

  2. Lishman L, Smyth SA, Sarafin K, Kleywegt S, Toito J, Peart T, Lee B, Servos M, Beland M, Seto P (2006) Occurrence and reductions of pharmaceuticals and personal care products and estrogens by municipal wastewater treatment plants in Ontario, Canada. Sci Tot Environ 367:544–558

    Article  CAS  Google Scholar 

  3. Santos JL, Aparicio I, Alonso E (2007) Occurrence and risk assessment of pharmaceutically active compounds in wastewater treatment plants. A case study: Seville city (Spain). Environ Int 33:596–601

    Article  CAS  Google Scholar 

  4. Terzic S, Senta I, Ahel M, Gros M, Petrovic M, Barceló D, Muller J, Knepper T, Marti I, Ventura F, Jovancic P, Jabucar D (2008) Occurrence and fate of emerging wastewater contaminants in Western Balkan Region. Sci Total Environ 399:66–77

    Google Scholar 

  5. Boillot C, Bazin C, Tissot-Guerraz F, Droguet J, Perraud M, Cetre JC, Trepo D, Perrodin Y (2008) Daily physicochemical, microbiological and ecotoxicological fluctuations of a hospital effluent according to technical and care activities. Sci Tot Environ 403:113–129

    Article  CAS  Google Scholar 

  6. Duong H, Pham N, Nguyen H, Hoang T, Pham H, Ca Pham V, Berg M, Giger W, Alder A (2008) Occurrence, fate and antibiotic resistance of fluoroquinolone antibacterials in hospital wastewaters in Hanoi, Vietnam. Chemosphere 72:968–973

    Article  CAS  Google Scholar 

  7. Suarez S, Lema JM, Omil F (2009) Pre-treatment of hospital wastewater by coagulation-flocculation and flotation. Bioresour Technol 100:2138–2146

    Article  CAS  Google Scholar 

  8. GWRC (2008) Development of an international priority list of pharmaceuticals relevant for the water cycle. Available at the site http://edepot.wur.nl/138086. Last access on 1 Mar 2011

  9. Barceló D (2003) Emerging pollutants in water analysis. TrAC Trends Anal Chem 22(10):xiv–xvi

    Article  Google Scholar 

  10. Jjemba PK (2006) Excretion and ecotoxicity of pharmaceuticals and personal care products in the environment. Ecotoxicol Environ Saf 63(1):113–130

    Article  CAS  Google Scholar 

  11. Ternes TA, Joss A (2006) Human pharmaceuticals, hormones and fragrances. The challenge of micropollutants in urban water management. IWA Publishing, London

    Google Scholar 

  12. Lienert J, Burki T, Escher BI (2007) Reducing micropollutants with source control: substance flow analysis of 212 pharmaceuticals in faeces and urine. Water Sci Technol 55(5):87–96

    Google Scholar 

  13. Stuer-Lauridsen F, Birkved M, Hansen LP, Holten Lutzhùft HC, Halling-Sorensen B (2000) Environmental risk assessment of human pharmaceuticals in Denmark after normal therapeutic use. Chemosphere 40:783–793

    Article  CAS  Google Scholar 

  14. Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36(6):1202–1211

    Article  CAS  Google Scholar 

  15. Furhacker M (2008) The water framework directive – can we reach the target? Water Sci Technol 57(1):9–17

    Article  CAS  Google Scholar 

  16. Wangsaatmaja S (1997) Environmental action plan for a hospital. In: MS thesis in engineering, Asian Institute of Technology, Bangkok, Thailand

    Google Scholar 

  17. Laber J, Haberl R, Shrestha R (1999) Two stage constructed wetland for treating hospital wastewater in Nepal. Water Sci Technol 40(3):317–324

    Article  CAS  Google Scholar 

  18. Altin A, Altin S, Degirmenci M (2003) Characteristics and treat-ability of hospital (medical) wastewaters. Fresenius Environ Bull 12:1098–1108

    CAS  Google Scholar 

  19. Mohee R (2005) Medical wastes characterisation in healthcare institutions in Mauritius. Waste Manag 25:575–581

    Article  CAS  Google Scholar 

  20. Rezaee A, Ansari M, Khavanin A, Sabzali A, Aryan MM (2005) Hospital wastewater treatment using an integrated anaerobic aerobic fixed film bioreactor. Am J Environ Sci 1(4):259–263

    Article  CAS  Google Scholar 

  21. Sarafraz S, Khani M, Yaghmaeian K (2007) Quality and quantity survey of hospital wastewater in Hormozgan province. Iran J Health Sci Eng 4(1):43–50

    CAS  Google Scholar 

  22. Regione Emilia Romagna, Guidelines of Regione Emilia Romagna on the Managing of Sanitary Institutions wastes and wastewaters, DGR 1155 27 Luglio 2009 (Linee guida per la gestione dei rifiuti e degli scarichi idrici nelle aziende sanitarie dell’Emilia-Romagna, In Italian). Available at the site: https://worksanita.regione.emilia-romagna.it/sites/seas/gestamb/Linee%20guida%202009/AdapterHTTP_atto_completo.pdf. Last access on 24 July 2012

  23. Mesdaghinia AR, Naddafi K, Saeedi R, Zamanzadeh M (2009) Wastewater characteristics and appropriate method for wastewater management in the hospitals. Iran J Public Health 38(1):34–40

    CAS  Google Scholar 

  24. Beier S, Koster S, Veltmann K, Schroder H, Fr Pinnekamp J (2010) Treatment of hospital wastewater effluent by nanofiltration and reverse osmosis. Water Sci Technol 61(7):1691–1698

    Article  CAS  Google Scholar 

  25. Ort C, Lawrence M, Reungoat J, Eagleham G, Carter S, Keller J (2010) Determination of the fraction of pharmaceutical residues in wastewater originating from a hospital. Water Res 44:605–615

    Article  CAS  Google Scholar 

  26. CTC - Clean Technology Consultant (1994) Design criteria of wastewater treatment plant. Ratchawithi Hospital, Bangkok, Thailand

    Google Scholar 

  27. Metcalf, Eddy (1991) Wastewater engineering. Treatment, disposal, re-use, III edn. McGraw-Hill, Singapore

    Google Scholar 

  28. Galletti A (2011) Pharmaceutical compounds in waters. Investigations on hospital effluents as a source of environmental contamination and on their treatability. In: PhD thesis in science of engineering, University of Ferrara, Italy

    Google Scholar 

  29. Joss A, Keller E, Alder AC, Gobel A, McArdell CS, Ternes T, Siegrist H (2005) Removal of pharmaceuticals and fragrances in biological wastewater treatment. Water Res 39:3139–3152

    Article  CAS  Google Scholar 

  30. Verlicchi P, Galletti A, Masotti L (2008) Caratterizzazione e trattabilità di reflui ospedalieri: indagine sperimentale (con sistemi MBR) presso un ospedale dell’area ferrarese. In: Proceedings of Sidisa Conference Florence, Italy

    Google Scholar 

  31. Masotti L, Verlicchi P (2005) Depurazione delle acque di piccole comunità. Hoepli, Milano. ISBN 88-203-2963-8

    Google Scholar 

  32. Zhang K, Farahbakhsh K (2007) Removal of native coliphages and coliform bacteria from municipal wastewater by various wastewater treatment processes: implications to water reuse. Water Res 41:2816–2824

    Article  CAS  Google Scholar 

  33. Mersi A, Marraccini E, Rapaci G, Rubini P (1993) Requisiti normativi e tecnici dei reflui ospedalieri. L’Igiene moderna 100:1443–1450

    Google Scholar 

  34. Kummerer K, Erbe T, Gartiser S, Brinker L (1998) AOX-emissions from hospital into municipal wastewater. Chemosphere 36(11):2473–2445

    Article  Google Scholar 

  35. Wen X, Ding H, Huang X, Liu R (2004) Treatment of hospital wastewater using a submerged membrane bioreactor. Proc Biochem 39:1427–1431

    Article  CAS  Google Scholar 

  36. Emmanuel E, Perrodin Y, Keck G, Blanchard JM, Vermande P (2005) Ecotoxicological risk assessment of hospital wastewater: a proposed framework for raw effluents discharging into urban sewer network. J Hazard Mater A117:1–11

    Article  Google Scholar 

  37. Hartemann P, Hautemaniere A, Joyeux M (2005) La problématique des effluents hospitaliers. Hygiène 13(5):369–374

    Google Scholar 

  38. Tsakoma M, Anagnostopoulou E, Gidarakos E (2007) Hospital waste management and toxicity evaluation: a case study. Waste Manag 27:912–920

    Article  Google Scholar 

  39. Verlicchi P, Galletti A, Petrovic M, Barcelò D (2010) Hospital effluents as a source of emerging pollutants: an overview of micropollutants and sustainable treatment options. J Hydrol 389:416–428

    Article  CAS  Google Scholar 

  40. Chiang C, Tsai C, Lin S, Huo C, Lo K (2003) Disinfection of hospital wastewater by continuous ozonization. J Environ Sci Health A Tox Hazard Subst Environ Eng A38(12):2895–2908

    Article  CAS  Google Scholar 

  41. Peou S, Blech MF, Hartemann P (1981) Etude de la fréquence des bacttéries résistantes aux antibiotiques dans les eaux résiduaires hospitalièrers et urbaines. Environ Toxicol Lett 2:347–356

    CAS  Google Scholar 

  42. Schwartz T, Kohnen W, Jansen B, Obst U (2003) Detection of antibiotic-resistant bacteria and their resistance genes in wastewater, surface water, and water biofilms. FEMS Microbiol Ecol 43:325–335

    Article  CAS  Google Scholar 

  43. Adelowo O, Fagade OE, Oke AJ (2008) Prevalence of co-resistance to disinfectants and clinically relevant antibiotics in bacterial isolates from three hospital laboratory wastewaters in South-western Nigeria. World J Microbiol Technol 24:1993–1997

    Article  CAS  Google Scholar 

  44. Chitnis V, Chitnis S, Vaidya K, Ravikant S, Patil S, Chitnis DS (2004) Bacterial population changes in hospital effluent treatment plant in central India. Water Res 38:441–447

    Article  CAS  Google Scholar 

  45. Leprat P, Chedevergne E, Camus A, Pacheco A, Mounier M (1996) Diagnostic physico-chimique et microbiologique des rejets hospitaliers. État des lieux à l'hôpital Dupuytren CHU de Limoges. Tech Hosp 612:35–38

    Google Scholar 

  46. Prado T, Silva DM, Guilayn WC, Rose TL, Gaspar AMC, Miagostovich MP (2011) Quantification and molecular characterization of enteric viruses detected in effluents from two hospital wastewater treatment plants. Water Res 45:1287–1297

    Article  CAS  Google Scholar 

  47. Liu Q, Zhou Y, Chen L, Zheng X (2010) Application of MBR for hospital wastewater treatment in China. Desalination 250:605–608

    Article  CAS  Google Scholar 

  48. Leprat P (1999) Caractéristiques et impacts des rejets liquides hospitaliers. Tech Hosp 634:56–57

    Google Scholar 

  49. Lopez N, Deblonde T, Hartemann Ph (2010) Les effluents liquid hospitaliers. Hygiène 18(6):405–410

    Google Scholar 

  50. Kummerer K, Helmers E (2000) Hospital effluents as a source of gadolinium in the aquatic environment. Environ Sci Technol 34:573–577

    Article  Google Scholar 

  51. Kosma CI, Lambropoulu DA, Albanis TA (2010) Occurrence and removal of PPCPs in municipal and hospital wastewaters in Greece. J Hazard Mater 179:804–817

    Article  CAS  Google Scholar 

  52. Mullot JU,Karolak S, Fontova A, Levi Y (2010) Modeling of hospital wastewater pollution by pharmaceuticals: first results of Mediflux study carried out in three French hospitals. Wat Sci Technol 62(12):2912–2919

    Google Scholar 

  53. Lenz K, Koellensperger G, Hann S, Weissenbacher N, Mahnik SN, Fuerhacker M (2007) Fate of cancerostatic compounds in biological wastewater treatment of hospital effluents. Chemosphere 69:1765–1774

    Article  CAS  Google Scholar 

  54. Lenz K, Mahnik SN, Weissenbacher N, Mader RM, Krenn P, Hann S, Koellensperger G, Uhl M, Knasmuller S, Ferk F, Bursch W, Fuerhacker M (2007) Monitoring, removal and risk assessment of cytostatic drugs in hospital wastewater. Water Sci Technol 56(12):41–149

    Google Scholar 

  55. Hartemann A, Golet E, Gartiser S, Alder AC, Koller T, Widmer RM (1998) Identification of fluoroquinolone antibiotics as the main source of humic? Genotoxicity in native hospital wastewater. Environ Toxicol Chem 17(3):377–382

    Google Scholar 

  56. Jolibois B, Guerbet M (2005) Evaluation of industrial, hospital and domestic wastewater genotoxicity with the Salmonella fluctuation test and the SOS chromotest. Mutat Res 565(2):151–162

    Article  CAS  Google Scholar 

  57. Ferk F, Misik M, Grummt T, Majer B, Fuerhacker M, Buchmann C, Vital M, Uhl M, Lenz K, Grillitsch B, Parzefall W, Nersesyan A, Knasmuller S (2009) Genotoxic effects of wastewater from an oncological ward. Mutat Res 672(2):69–75

    Article  CAS  Google Scholar 

  58. Heberer T, Feldmann D (2005) Contribution of effluents from hospitals and private households to the total loads of diclofenac and carbamazepine in municipal sewage effluents – modeling versus measurements. J Hazard Mater 122(3):211–218

    Article  CAS  Google Scholar 

  59. Thomas KV, Dye C, Schlabach M, Langford KH (2007) Source to sink tracking of selected human pharmaceuticals from two Oslo city hospitals and a wastewater treatment works. J Environ Monitoring 9(12):1410–1418

    Article  CAS  Google Scholar 

  60. Feldmann DF, Zuehlke S, Heberer T (2008) Occurrence, fate and assessment of polar metamizole (dipyrone) residues in hospital and municipal wastewater. Chemosphere 71(9):1754–1764

    Article  CAS  Google Scholar 

  61. Verlicchi P, Galletti A, Masotti L (2010) Management of hospital wastewaters: the case of the effluent of a large hospital situated in a small town. Water Sci Technol 61(10):2507–2519

    Article  CAS  Google Scholar 

  62. Emmanuel E, Keck G, Blanchard JM, Vermande M, Perrodin Y (2004) Toxicological effects of disinfections using sodium hypochlorite on aquatic organisms and its contribution to AOX formation in hospital wastewater. Environ Int 30:891–900

    Article  CAS  Google Scholar 

  63. Kummerer K, Helmers E, Hubner P, Mascart G, Milandri M, Reinthaler F, Zwakenberg M (1999) European hospitals as a source for platinum in the environment in comparison with other sources. Sci Tot Environ 225:155–165

    Article  CAS  Google Scholar 

  64. Gobel A, Thomsen A, Mcardell C, Joss A, Giger W (2005) Occurrence and sorption behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment. Environ Sci Technol 39:3981–3989

    Article  Google Scholar 

  65. Skadsen JM, Rice BL, Meyering DJ (2004) The occurrence and fate of pharmaceuticals, personal care products and endocrine disrupting compounds in a municipal water use cycle: a case study in the city of Ann Arbor: City of Ann Arbor. Available at: http://www.a2gov.org/government/publicservices/water_treatment/Documents/EndocrineDisruptors.pdf. Last access on 1 Mar 2011

  66. Alexy R, Sommer A, Lange FT, Kummerer K (2006) Local use of antibiotics and their input and fate in small sewage treatment plant – significance of balancing and analysis on a local scale vs. nationwide scale. Acta Hydrochem Hydrobiol 34:587–592

    Article  CAS  Google Scholar 

  67. Kummerer K, Henninger A (2003) Promoting resistance by the emission of antibiotics from hospital and households into effluent. Clin Microbiol Infect 9:1203–1214

    Article  Google Scholar 

  68. US FDA (1998) Guidance for industry: environmental assessment of human drug and biologies applications. CMC 6 Revison 1. Food and Drug Administration, Rockville, MD. http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070561.pdf. Last access on 1 Mar 2011

  69. Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for the community action in the field of water policy. 23 Oct 2000

    Google Scholar 

  70. Beier S, Cramer C, Koster S, Mauer C, Palmowski L, Schroeder H, Fr Pinnekamp J (2011) Full scale membrane bioreactor treatment of hospital wastewater as forerunner for hot-spot wastewater treatment solutions in high density urban areas. Water Sci Technol 63(1):66–71

    Article  CAS  Google Scholar 

  71. International Association of Waterworks in the Rhine Catchment Area, IAWR (2008) Danube, Meuse and Rhine-Memorandum, 1–20

    Google Scholar 

  72. UBA 2008 The Federal Environment Agency (ed) (2008) Public drinking water supply – evaluation of organic micropollutants. Letter to the ministry of the environment and conservation, agriculture and consumer protection of the state of North Rhine-Westphalia from March 14th 2008

    Google Scholar 

  73. Schuster A, Hadrich C, Kummerer K (2008) Flows of active pharmaceutical ingredients originating from health care practices on a local, regional, and nationwide level in Germany – is hospital effluent treatment an effective approach for risk reduction? Water Air Soil Pollut Focus 8:457–471

    Article  Google Scholar 

  74. Verlicchi P, Al Aukidy M, Galletti A, Petrovic M, Barceló D (2012) Hospital effluent: investigation of the concentrations and distribution of pharmaceuticals and environmental risk assessment. Sci Tot Environ 430:109–118

    Google Scholar 

  75. Kummerer K (2009) Antibiotics in the aquatic environment – a review – part II. Chemosphere 75:435–441

    Article  Google Scholar 

  76. Langford KH, Thomas KV (2009) Determination of pharmaceutical compounds in hospital effluents and their contribution to wastewater treatment works. Environ Int 35:766–770

    Article  CAS  Google Scholar 

  77. Carballa M, Omil F, Lema J, Llompart M, Garcia-Jares C, Rodriguez I, Gomez M, Ternes T (2004) Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Res 38:2918–2926

    Article  CAS  Google Scholar 

  78. Nakada N, Tonishima T, Shinohara H, Kiri K, Takada H (2006) Pharmaceutical chemicals and endocrine disrupters in municipal wastewater in Tokyo and their removal during activated sludge treatment. Water Res 40:3297–3303

    Article  CAS  Google Scholar 

  79. Batt A, Kim S, Aga D (2007) Comparison of the occurrence of antibiotics in four full-scale wastewater treatment plants with varying designs and operations. Chemosphere 68:428–435

    Article  CAS  Google Scholar 

  80. Oppenheimer J, Stephenson R, Burbano A, Liu L (2007) Characterizing the passage of personal care products through wastewater treatment processes. Water Environ Res 79(13):2564–2577

    Article  CAS  Google Scholar 

  81. Vieno N, Tuhkanen T, Kronberg L (2007) Elimination of pharmaceuticals in sewage treatment plants in Finland. Water Res 41:1001–1012

    Article  CAS  Google Scholar 

  82. Teske S, Arnold R (2008) Removal of natural and xeno-estrogens during conventional wastewater treatment. Rev Environ Sci Biotechnol 7:107–124

    Article  CAS  Google Scholar 

  83. Pauwels B, Verstraete W (2006) The treatment of hospital wastewater: an appraisal. J Wat Health 4(4):405–416

    Google Scholar 

  84. Jones OAH, Voulvoulis N, Lester NJ (2005) Human pharmaceuticals in wastewater treatment processes. Crit Rev Environ Sci Technol 35:401–425

    Article  CAS  Google Scholar 

  85. Castiglioni S, Bagnati R, Fanelli R, Pomati F, Calamari D, Zuccato E (2006) Removal of pharmaceuticals in sewage treatment plants in Italy. Environ Sci Technol 40:357–363

    Article  CAS  Google Scholar 

  86. Lindberg R, Olofsson U, Rendahl P, Johansson M, Tysklind M, Andersson B (2006) Behaviour of fluoroquinolones and trimethoprim during mechanical, chemical, and active sludge treatment of sewage water and digestion of sludge. Environ Sci Technol 40(3):1042–1048

    Article  CAS  Google Scholar 

  87. Pauwels B, Verstraete W (2006) The treatment of hospital wastewater: an appraisal. J Water Health 4(4):405–416

    CAS  Google Scholar 

  88. Matamoros V, Garcia J, Bajona JM (2008) Organic micropollutant removal in a full-scale surface flow constructed wetland fed with secondary effluent. Water Res 42:653–660

    Article  CAS  Google Scholar 

  89. Miège C, Choubert JM, Ribeiro L, Eusèbe M, Coquery M (2008) Removal efficiency of pharmaceuticals and personal care products with varying wastewater treatment processes and operating conditions – conception of a database and first results. Water Sci Technol 57(1):49–56

    Article  Google Scholar 

  90. Kreuzinger N, Clara M, Droiss H (2004) Relevance of the sludge retention time (SRT) as design criteria for wastewater treatment plants for the removal of endocrine disruptors and pharmaceuticals from wastewater. Water Sci Technol 50(5):149–156

    CAS  Google Scholar 

  91. Daigger GT, Rittmann TE, Adams S, Andreottola G (2005) Are membrane bioreactors ready for widespread applications? Environ Sci Technol 39(19):399A–406A

    Article  CAS  Google Scholar 

  92. Kimura K, Hara H, Watanabe Y (2007) Elimination of selected acidic pharmaceuticals from municipal wastewaters by activated sludge systems and membrane bioreactors. Environ Sci Technol 41:3708–3714

    Article  CAS  Google Scholar 

  93. Radjenovic J, Petrovic M, Barceló D (2009) Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. Water Res 43:831–841

    Article  CAS  Google Scholar 

  94. Ottoson J, Hansen A, Bjorlenius B, Norder H, Stenstrom TA (2006) Removal of viruses, parasitic protozoa and microbial indicators in conventional and membrane processes in a wastewater pilot plant. Water Res 40:1449–1457

    Article  CAS  Google Scholar 

  95. Huber MM, Canonica S, Park YG, von Gunten U (2003) Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environ Sci Technol 37:1016–1024

    Article  CAS  Google Scholar 

  96. Balcioglu IA, Otker M (2003) Treatment of pharmaceuticals wastewater containing antibiotics by O3 and O3/H2O2 processes. Chemosphere 50:85–95

    Article  Google Scholar 

  97. Ternes TA, Stuber J, Herrmann N, McDowell D, Ried A, Kampmann M, Teiser B (2003) Ozonation: a tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewaters? Water Res 37:1976–1982

    Article  CAS  Google Scholar 

  98. Machado EL, Schmidt LT, Hoeltz JM, Dalbert D, Alcayaga ELA (2007) Secondary hospital wastewater detoxification and disinfection by advanced oxidation process. Environ Technol 28:1128–1143

    Article  Google Scholar 

  99. Zimmermann SG, Salhi E, Koepke S, Hollender J, Hammes F, Gansner E, Koch M, Traber J, Ort C, Siegrist HR, von Gunten U (2008) Assessment of a full scale ozonation to reduce micropollutants concentrations in municipal wastewater. In: Proceedings of LET conference, Zurich, CH

    Google Scholar 

  100. Zwiener C, Frimmel FH (2003) Short-term tests with a pilot sewage plant and biofilm reactors for the biological degradation of the pharmaceutical compounds clofibric acid, ibuprofen and diclofenac. Sci Tot Environ 309:201–211

    Google Scholar 

  101. Gagnon C, Lajeunesse A, Cejka P, Gagn F, Hausler R (2008) Degradation of selected acidic and neutral pharmaceutical products in a primary-treated wastewater by disinfection processes. Ozone Sci Eng 30(5):387–392

    Article  CAS  Google Scholar 

  102. Kim S, Weber AS, Batt A, Aga DS (2008) Removal of pharmaceuticals in biological wastewater treatment plants. In: Aga DS (ed) Fate of pharmaceuticals in the environment and in water treatment systems. CRC Press, Boca Raton, pp 349–361

    Google Scholar 

  103. Larsen TA, Lienert J, Joss A, Siegrist H (2004) How to avoid pharmaceuticals in the aquatic environment. J Biotechnol 113:295–304

    Article  CAS  Google Scholar 

  104. Winker M, Faika D, Gulyas H, Otterpohl R (2008) A comparison of human pharmaceutical concentration in raw municipal wastewater and yellow water. Sci Tot Environ 399:96–104

    Article  CAS  Google Scholar 

  105. Heinzmann B, Schwarz RJ, Schuster P, Pineau C (2008) Decentralized collection of iodinated x-ray contrast media in hospitals-results of the feasibility study and the practice test phase. Water Sci Techno 57:209–215

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Verlicchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Verlicchi, P., Galletti, A., Al Aukidy, M. (2013). Hospital Wastewaters: Quali-Quantitative Characterization and for Strategies for Their Treatment and Disposal. In: Sharma, S., Sanghi, R. (eds) Wastewater Reuse and Management. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4942-9_8

Download citation

Publish with us

Policies and ethics