Size and Surface Effects on Stress-Diffusion Coupling in Silicon Nanowire Electrodes

  • Y. F. Gao
  • M. Zhou
Conference paper
Part of the IUTAM Bookseries (closed) book series (IUTAMBOOK, volume 31)


The development of diffusion-induced stresses (DIS) in amorphous alloy nanowire-based Li-ion battery electrodes is analyzed using a finite deformation model with full diffusion/stress coupling. The analyses reveal significant contributions to the driving force for diffusion by stress gradients, an effect much stronger than those seen in cathode lattices, but so far neglected for alloy-based anodes. A significant contribution of surface to overall stresses is also found. The long-term DIS is determined by charging rate, nanowire radius, and Li mobility modulated by stress effects. Stress-enhanced diffusion (SED) is negligible when lithium concentration is low, leading to significantly higher DIS levels in the early stage of a charging cycle. This finding points out the need to use lower charging rates in the initial stages of charging cycles of amorphous lithium alloy anodes.


Stress Profile Lithium Concentration Alloy Electrode Charge Rate Lithium Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Larcher, D., Beattie, S., Morcrette, M., Edstroem, K., Jumas, J.C., Tarascon, J.M.: Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries. J. Mater. Chem. 17(36), 3759–3772 (2007). doi: 10.1039/B705421c CrossRefGoogle Scholar
  2. 2.
    Chevrier, V.L., Dahn, J.R.: First principles model of amorphous silicon lithiation. J. Electrochem. Soc. 156(6), A454–A458 (2009). doi: 10.1149/1.3111037 CrossRefGoogle Scholar
  3. 3.
    Beaulieu, L.Y., Eberman, K.W., Turner, R.L., Krause, L.J., Dahn, J.R.: Colossal reversible volume changes in lithium alloys. Electrochem. Solid State Lett. 4(9), A137–A140 (2001)CrossRefGoogle Scholar
  4. 4.
    Chan, C.K., Peng, H.L., Liu, G., McIlwrath, K., Zhang, X.F., Huggins, R.A., Cui, Y.: High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3(1), 31–35 (2008)CrossRefGoogle Scholar
  5. 5.
    Cui, L.F., Ruffo, R., Chan, C.K., Peng, H.L., Cui, Y.: Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett. 9(1), 491–495 (2009). doi: 10.1021/Nl8036323 CrossRefGoogle Scholar
  6. 6.
    Song, T., Xia, J.L., Lee, J.H., Lee, D.H., Kwon, M.S., Choi, J.M., Wu, J., Doo, S.K., Chang, H., Park, W.I., Zang, D.S., Kim, H., Huang, Y.G., Hwang, K.C., Rogers, J.A., Paik, U.: Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. Nano Lett. 10(5), 1710–1716 (2010). doi: 10.1021/Nl100086e CrossRefGoogle Scholar
  7. 7.
    Magasinski, A., Dixon, P., Hertzberg, B., Kvit, A., Ayala, J., Yushin, G.: High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 9(4), 353–358 (2010). doi: 10.1038/Nmat2725 CrossRefGoogle Scholar
  8. 8.
    Christensen, J., Newman, J.: Stress generation and fracture in lithium insertion materials. J. Solid State Electrochem. 10(5), 293–319 (2006)CrossRefGoogle Scholar
  9. 9.
    Deshpande, R., Cheng, Y.T., Verbrugge, M.W.: Modeling diffusion-induced stress in nanowire electrode structures. J. Power. Sources 195(15), 5081–5088 (2010)CrossRefGoogle Scholar
  10. 10.
    Cheng, Y.T., Verbrugge, M.W.: Diffusion-induced stress, interfacial charge transfer, and criteria for avoiding crack initiation of electrode particles. J. Electrochem. Soc. 157(4), A508–A516 (2010). doi: 10.1149/1.3298892 CrossRefGoogle Scholar
  11. 11.
    Haftbaradaran, H., Gao, H.J., Curtin, W.A.: A surface locking instability for atomic intercalation into a solid electrode. Appl. Phys. Lett. 96(9), 091909 (2010)CrossRefGoogle Scholar
  12. 12.
    Wu, C.H.: The role of Eshelby stress in composition-generated and stress-assisted diffusion. J. Mech. Phys. Solids 49(8), 1771–1794 (2001)zbMATHCrossRefGoogle Scholar
  13. 13.
    Zhou, H.G., Qu, J.M., Cherkaoui, M.: Stress-oxidation interaction in selective oxidation of Cr-Fe alloys. Mech. Mater. 42(1), 63–71 (2010). doi: 10.1016/j.mechmat.2009.09.007 CrossRefGoogle Scholar
  14. 14.
    Swaminathan, N., Qu, J., Sun, Y.: An electrochemomechanical theory of defects in ionic solids. I. Theory. Philos. Mag. 87(11), 1705–1721 (2007)CrossRefGoogle Scholar
  15. 15.
    Beaulieu, L.Y., Hatchard, T.D., Bonakdarpour, A., Fleischauer, M.D., Dahn, J.R.: Reaction of Li with alloy thin films studied by in situ AFM. J. Electrochem. Soc. 150(11), A1457–A1464 (2003). doi: 10.1149/1.1613668 CrossRefGoogle Scholar
  16. 16.
    Cheng, Y.T., Verbrugge, M.W.: The influence of surface mechanics on diffusion induced stresses within spherical nanoparticles. J. Appl. Phys. 104(8), 083521 (2008). doi: 10.1063/1.3000442 CrossRefGoogle Scholar
  17. 17.
    Timoshenko, S.: Theory of Elasticity. Engineering Societies Monographs, 2nd edn. McGraw-Hill, New York (1951)zbMATHGoogle Scholar
  18. 18.
    Newman, J.S., Thomas-Alyea, K.E.: Electrochemical Systems, 3rd edn. Wiley, Hoboken (2004)Google Scholar
  19. 19.
    Szabadi, M., Hess, P., Kellock, A.J., Coufal, H., Baglin, J.E.E.: Elastic and mechanical properties of ion-implanted silicon determined by surface-acoustic-wave spectrometry. Phys. Rev. Ser. B 58(14), 8941–8948 (1998)CrossRefGoogle Scholar
  20. 20.
    Ding, N., Xu, J., Yao, Y.X., Wegner, G., Fang, X., Chen, C.H., Lieberwirth, I.: Determination of the diffusion coefficient of lithium ions in nano-Si. Solid State Ionics 180(2–3), 222–225 (2009). doi: 10.1016/j.ssi.2008.12.015 CrossRefGoogle Scholar
  21. 21.
    Shenoy, V.B., Johari, P., Qi, Y.: Elastic softening of amorphous and crystalline Li–Si Phases with increasing Li concentration: a first-principles study. J. Power Sources 195(19), 6825–6830 (2010). doi: 10.1016/j.jpowsour.2010.04.044 CrossRefGoogle Scholar
  22. 22.
    Zhang, X.C., Shyy, W., Sastry, A.M.: Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles. J. Electrochem. Soc. 154(10), A910–A916 (2007). doi: 10.1149/1.2759840 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.The George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations