Skip to main content

Understanding Diffusion-Induced-Stresses in Lithium Ion Battery Electrodes

  • Conference paper
  • First Online:

Part of the book series: IUTAM Bookseries (closed) ((IUTAMBOOK,volume 31))

Abstract

Most lithium ion battery electrodes experience large volume expansion and contraction during lithiation and delithiation, respectively. Electrode failure, in the form of fracture and decrepitation, can occur as a result of repeated volume changes. In this paper, we provide an overview of our recent work on modeling the evolution of concentration, stress, and strain energy within a spherical- or cylindrical-electrode element under various charging-discharging conditions. Based on the analytic results, we propose tensile stress and strain energy based criteria for the initiation and propagation of cracks within the electrodes. We will also discuss “size effects” on stresses and fracture of electrodes. These results may help guide the development of new materials for lithium ion batteries with enhanced durability and performance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Doyle, M., Fuller, T.F., Electrochem, J.: Modeling of galvanostatic charge and discharge of the lithium polymer insertion cell. J. Electrochem. Soc. 140(6), 1526–1533 (1993)

    Article  Google Scholar 

  2. Fuller, T.F., Doyle, M., Newman, J.: Simulation and optimization of the dual lithium ion insertion cell. J. Electrochem. Soc. 141(1), 1–10 (1994)

    Article  Google Scholar 

  3. Doyle, M., Newman, J., Gozdz, A.S., Schmutz, C.N., Tarascon, J.M.: Comparison of modeling predictions with experimental data from plastic lithium ion cells. J. Electrochem. Soc. 143(6), 1890–1903 (1996)

    Article  Google Scholar 

  4. Darling, R., Newman, J.: Modeling a porous intercalation electrode with two characteristic particle sizes. J. Electrochem. Soc. 144(12), 4201–4208 (1997)

    Article  Google Scholar 

  5. Verbrugge, M.W., Koch, B.J.: Lithium intercalation of carbon-fiber microelectrodes. J. Electrochem. Soc. 143(1), 24–31 (1996)

    Article  Google Scholar 

  6. Verbrugge, M.W., Koch, B.J.: Modeling lithium intercalation of single-fiber carbon microelectrodes. J. Electrochem. Soc. 143(2), 600–608 (1996)

    Article  Google Scholar 

  7. Verbrugge, M.W., Koch, B.J.: Electrochemistry of intercalation materials – Charge-transfer reaction and intercalate diffusion in porous electrodes. J. Electrochem. Soc. 146(3), 833–839 (1999)

    Article  Google Scholar 

  8. Baker, D.R., Verbrugge, M.W.: Temperature and current distribution in thin-film batteries. J. Electrochem. Soc. 146(7), 2413–2424 (1999)

    Article  Google Scholar 

  9. Verbrugge, M.W., Koch, B.J.: Electrochemical analysis of lithiated graphite anodes. J. Electrochem. Soc. 150(3), A374–A384 (2003)

    Article  Google Scholar 

  10. Zhang, D., Popov, B.N., White, R.E.: Modeling lithium intercalation of a single spinel particle under potentiodynamic control. J. Electrochem. Soc. 147(3), 831–838 (2000)

    Article  Google Scholar 

  11. Srinivasan, V., Newman, J.: Design and optimization of a natural graphite/iron phosphate lithium-ion cell. J. Electrochem. Soc. 151(10), A1530–A1538 (2004)

    Article  Google Scholar 

  12. Devan, S., Subramanian, V.R., White, R.E.: Analytical solution for the impedance of a porous electrode. J. Electrochem. Soc. 151(6), A905–A913 (2004)

    Article  Google Scholar 

  13. Dees, D., Gunen, E., Abraham, D., Jansen, A., Prakash, J.: Electrochemical modeling of lithium-ion positive electrodes during hybrid pulse power characterization tests. J. Electrochem. Soc. 155(8), A603–A613 (2008)

    Article  Google Scholar 

  14. Wolfenstine, J.: Critical grain size for microcracking during lithium insertion. J. Power Sources 79(1), 111–113 (1999)

    Article  Google Scholar 

  15. Huggins, R.A., Nix, W.D.: Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems. Ionics 6, 57–63 (2000)

    Article  Google Scholar 

  16. García, R.E., Chiang, Y.-M., Carter, W.C., Limthongkul, P., Bishop, C.M.: Microstructural modeling and design of rechargeable lithium-ion batteries. J. Electrochem. Soc. 152, A255 (2005)

    Article  Google Scholar 

  17. Christensen, J., Newman, J.: A mathematical model of stress generation and fracture in lithium manganese oxide. J. Electrochem. Soc. 153(6), A1019–A1030 (2006)

    Article  Google Scholar 

  18. Christensen, J., Srinivasan, V., Newman, J.: Optimization of lithium titanate electrodes for high-power cells. J. Electrochem. Soc. 153(3), A560–A565 (2006)

    Article  Google Scholar 

  19. Zhang, X.C., Shyy, W., Sastry, A.M.: Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles. J. Electrochem. Soc. 154(10), A910–A916 (2007)

    Article  Google Scholar 

  20. Zhang, X.C., Sastry, A.M., Shyy, W.: Intercalation-induced stress and heat generation within single lithium-ion battery cathode particles. J. Electrochem. Soc. 155(7), A542–A552 (2008)

    Article  Google Scholar 

  21. Cheng, Y.-T., Verbrugge, M.W.: The influence of surface mechanics on diffusion induced stresses within spherical nanoparticles. J. Appl. Phys. 104(8), 083521 (2008)

    Article  Google Scholar 

  22. Verbrugge, M.W., Cheng, Y.-T.: Stress distribution within spherical particles undergoing electrochemical insertion and extraction. ECS Trans. 16, 127–139 (2008)

    Article  Google Scholar 

  23. Deshpande, R., Cheng, Y.-T., Verbrugge, M.W.: Modeling diffusion-induced stress in nanowire electrode structures. J. Power Sources 195, 5081 (2010)

    Article  Google Scholar 

  24. Cheng, Y.-T., Verbrugge, M.W.: Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation. J. Power. Sources 190(2), 453–460 (2009)

    Article  Google Scholar 

  25. Verbrugge, M.W., Cheng, Y.-T.: Stress and strain-energy distributions within diffusion- controlled insertion-electrode particles subjected to periodic potential excitations. J. Electrochem. Soc. 156, A927–A937 (2009)

    Article  Google Scholar 

  26. Cheng, Y.-T., Verbrugge, M.W.: Diffusion-induced stress, interfacial charge transfer, and criteria for avoiding crack initiation of electrode particles. J. Electrochem. Soc. 157, A508 (2010)

    Article  Google Scholar 

  27. Cheng, Y.-T., Verbrugge, M.W.: Application of Hasselman’s crack propagation model to insertion electrodes. Electrochem. Solid-State Lett. 13, A128 (2010)

    Article  Google Scholar 

  28. Bard, A.J., Faulkner, L.R.: Electrochemical Methods. Wiley, New York (1980)

    Google Scholar 

  29. Newman, J., Thomas-Alyea, K.E.: Electrochemical Systems, 3rd edn. Wiley, Hoboken (2004)

    Google Scholar 

  30. Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids, 2nd edn. Clarendon, Oxford (1959)

    Google Scholar 

  31. Crank, J.: The Mathematics of Diffusion. Clarendon, Oxford (1956)

    MATH  Google Scholar 

  32. Prussin, S.: Generation and distribution of dislocations by solute diffusion. J. Appl. Phys. 32, 1876 (1961)

    Article  Google Scholar 

  33. Yang, F.Q.: Interaction between diffusion and chemical stresses. Mater. Sci. Eng. A409, 153 (2005)

    Google Scholar 

  34. Timoshenko, S.P., Goodier, J.N.: Theory of Elasticity, 3rd edn. McGraw-Hill, New York (1970)

    MATH  Google Scholar 

  35. Hasselman, D.P.H.: Elastic energy at fracture and surface energy as design criteria for thermal shock. J. Am. Ceramic Soc. 46, 535 (1963)

    Article  Google Scholar 

  36. Stauffer, D., Aharony, A.: Introduction to Percolation Theory, 2nd edn. Taylor & Francis, London (1992)

    Google Scholar 

  37. Graetz, J., Ahn, C.C., Yazami, R., Fultz, B.: Highly reversible lithium storage in nanostructured silicon. Electrochem. Solid State Lett. 6(9), A194–A197 (2003)

    Article  Google Scholar 

  38. Kim, I.S., Blomgren, G.E., Kumta, P.N.: Sn/C composite anodes for Li-ion batteries. Electrochem. Solid State Lett. 7(3), A44–A48 (2004)

    Article  Google Scholar 

  39. Jung, Y.S., Lee, K.T., Ryu, J.H., Im, D., Oh, S.M.: Sn-carbon core-shell powder for anode in lithium secondary batteries. J. Electrochem. Soc. 152(7), A1452–A1457 (2005)

    Article  Google Scholar 

  40. Kang, Y.M., Park, M.S., Lee, J.Y., Liu, H.K.: Si-Cu/carbon composites with a core-shell structure for Li-ion secondary battery. Carbon 45(10), 1928–1933 (2007)

    Article  Google Scholar 

  41. Chan, C.K., Peng, H.L., Liu, G., McIlwrath, K., Zhang, X.F., Huggins, R.A., Cui, Y.: High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3(1), 31–35 (2008)

    Article  Google Scholar 

  42. Riley, L.A., Cavanagh, A.S., George, S.M., Jung, Y.S., Yan, Y.F., Lee, S.H., Dillon, A.C.: Conformal surface coatings to enable high volume expansion Li-ion anode materials. Chemphyschem 11(10), 2124–2130 (2010)

    Article  Google Scholar 

  43. Gibbs, J.W.: The Scientific Papers of J. Willard Gibbs, vol. 1, p. 55. Longnans-Green, London (1906)

    MATH  Google Scholar 

  44. Fischer, F.D., Waitz, T., Vollath, D., Simha, N.K.: On the role of surface energy and surface stress in phase-transforming nanoparticles. Prog. Mater. Sci. 53(3), 481–527 (2008)

    Article  Google Scholar 

  45. Duan, H.L., Wang, J., Karihaloo, B.L.: Theory of elasticity at the nanoscale. In: Advances in Applied Mechanics, vol. 42. Elsevier Academic Press Inc, San Diego (2008), vol. 42, pp. 1–68

    Google Scholar 

  46. Shuttleworth, R.: The surface tension of solids. Proc. Phys. Soc. A63(365), 444–457 (1950)

    Google Scholar 

  47. Gurtin, M.E., Murdoch, A.: Continuum theory of elastic-material surfaces. Arch. Ration. Mech. Anal. 57(4), 291–323 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  48. Sharma, P., Ganti, S., Bhate, N.: Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl. Phys. Lett. 82(4), 535–537 (2003)

    Article  Google Scholar 

  49. Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11(3), 139–147 (2000)

    Article  Google Scholar 

  50. Deshpande, R., Qi, Y., Cheng, Y.-T.: Effects of concentration-dependent elastic modulus on diffusion-induced stresses for battery applications. J. Electrochem. Soc. 157(8), A967–A971 (2010)

    Article  Google Scholar 

  51. Harris, S.J., Deshpande, R.D., Qi, Y., Dutta, I., Cheng, Y.-T.: Mesopores inside electrode particles can change the Li-ion transport mechanism and diffusion-induced stress. J. Mater. Res. 25(8), 1433–1440 (2010)

    Article  Google Scholar 

  52. Renganathan, S., Sikha, G., Santhanagopalan, S., White, R.E.: Theoretical analysis of stresses in a lithium ion cell. J. Electrochem. Soc. 157(2), A155–A163 (2010)

    Article  Google Scholar 

  53. Bhandakkar, T.K., Gao, H.J.: Cohesive modeling of crack nucleation under diffusion induced stresses in a thin strip: implications on the critical size for flaw tolerant battery electrodes. Int. J. Solids and Struct. 47(10), 1424–1434 (2010)

    Article  MATH  Google Scholar 

  54. Golmon, S., Maute, K., Lee, S.H., Dunn, M.L.: Stress generation in silicon particles during lithium insertion. Appl. Phys. Lett. 97(3), 033111 (2010)

    Article  Google Scholar 

  55. Xiao, X.R., Wu, W., Huang, X.S.: A multi-scale approach for the stress analysis of polymeric separators in a lithium-ion battery. J. Power Sources 195(22), 7649–7660 (2010)

    Article  Google Scholar 

  56. Woodford, W.H., Chiang, Y.M., Carter, W.C.: “Electrochemical shock” of intercalation electrodes: a fracture mechanics analysis. J. Electrochem. Soc. 157(10), A1052–A1059 (2010)

    Article  Google Scholar 

  57. Zhao, K.J., Pharr, M., Vlassak, J.J., Suo, Z.G.: Fracture of electrodes in lithium-ion batteries caused by fast charging. J. Appl. Phys. 108(7), 073517 (2010)

    Article  Google Scholar 

  58. Yang, F.Q.: Insertion-induced breakage of materials. J. Appl. Phys. 108(7), 073536 (2010)

    Article  Google Scholar 

  59. Yang, F.Q.: Effect of local solid reaction on diffusion-induced stress. J. Appl. Phys. 107(10), 103516 (2010)

    Article  Google Scholar 

  60. Yang, F.Q.: Criterion for insertion-induced microcracking and debonding of thin films. J. Power Sources 196(1), 465–469 (2011)

    Article  Google Scholar 

  61. Shenoy, V.B., Johari, P., Qi, Y.: Elastic softening of amorphous and crystalline Li-Si Phases with increasing Li concentration: A first-principles study. J. Power Sources 195(19), 6825–6830 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the financial support from NSF (CMMI #1000726) and General Motors Global R&D Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang-Tse Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Cheng, YT., Verbrugge, M.W., Deshpande, R. (2013). Understanding Diffusion-Induced-Stresses in Lithium Ion Battery Electrodes. In: Cocks, A., Wang, J. (eds) IUTAM Symposium on Surface Effects in the Mechanics of Nanomaterials and Heterostructures. IUTAM Bookseries (closed), vol 31. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4911-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4911-5_18

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4910-8

  • Online ISBN: 978-94-007-4911-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics