Skip to main content

Part of the book series: IUTAM Bookseries (closed) ((IUTAMBOOK,volume 31))

  • 950 Accesses

Abstract

This contribution is concerned with the numerical implementation of boundary potential energies and the study of their impact on the deformations of thermomechanical solids. Although boundary effects can play a dominant role in material behavior, the common modelling in continuum mechanics takes exclusively the bulk into account, nevertheless, neglecting possible contributions from the boundary. In the approach of this contribution the boundary is equipped with its own thermodynamic life, i.e. we assume separate boundary energy, entropy and the like. Furthermore, the generalized local balance laws are given according to Javili and Steinmann (Int J Solids Struct, 47:3245–3253, 2010). Afterwards, derivations of a generalized weak formulation which is employed for the discretization and finite element implementation, including boundary potentials, are carried out completely based on a tensorial representation. Finally, numerical examples are presented to demonstrate the boundary effects due to the proposed thermohyperelastic material model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the current paper the discretization procedure for the bulk is skipped, for the sake of space.

References

  1. Armero, F., Simo, J.C.: A new unconditionally stable fractional step method for non-linear coupled thermomechanical problems. Int. J. Numer. Methods Eng. 35, 737–766 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dettmer, W., Peric, D.: A computational framework for free surface fluid flows accounting for surface tension. Comp. Methods Appl. Mech. Eng. 195, 3038–3071 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dingreville, R., Qu, J.: A semi-analytical method to compute surface elastic properties. Acta Mater. 55, 141–147 (2007)

    Article  Google Scholar 

  4. Duan, H.L., Wang, J., Karihaloo, B.L.: Theory of elasticity at the nanoscale. Adv. Appl. Mech. 42, 1–68 (2009)

    Article  Google Scholar 

  5. Fischer, F.D., Waitz, T., Vollath, D., Simha, N.K.: On the role of surface energy and surface stress in phase-transforming nanoparticles. Prog. Mater. Sci. 53, 481–527 (2008)

    Article  Google Scholar 

  6. Fischer, F.D., Simha, N.K., Svoboda, J.: Kinetics of diffusional phase transformation in multicomponent elastic-plastic materials. J. Eng. Mater. Technol. 125, 266–276 (2003)

    Article  Google Scholar 

  7. Fried, E., Gurtin, M.E.: A unified treatment of evolving interfaces accounting for small deformation and atomic transport with emphasis on Grain-Boundaries and expitaxy. Adv. Appl. Mech. 40, 1–177 (2004)

    Article  Google Scholar 

  8. Gibbs, J.W.: The scientific papers of JW Gibbs, vol. 1. Dover Publications, New York (1961)

    Google Scholar 

  9. Gurtin, M.E., Ian Murdoch, A.: A continuum theory of elastic material surfaces. Arch. Rational Mech. Anal. 57, 291–323 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gurtin, M.E., Struther, A.: Multiphase thermomechanics with interfacial .structure 3. Evolving phase boundaries in the presence of bulk deformation. Arch. Rational Mech. Anal. 112, 97–160 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. He, J., Lilley, C.M.: Surface effect on the elastic behavior of static bending nanowires. Nano Lett. 8, 1798–1802 (2008)

    Article  Google Scholar 

  12. He, J., Lilley, C.M.: The finite element absolute nodal coordinate formulation incorporated with surface stress effect to model elastic bending nanowires in large deformation. Comput. Mech. 44, 395–403 (2009)

    Article  MATH  Google Scholar 

  13. Javili, A., Steinmann, P.: A finite element framework for continua with boundary energies. Part I: the two-dimensional case. Comp. Methods Appl. Mech. Eng. 198, 2198–2208 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Javili, A., Steinmann, P.: A finite element framework for continua with boundary energies. Part II: the three-dimensional case. Comp. Methods Appl. Mech. Eng. 199, 755–765 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Javili, A., Steinmann, P.: On thermomechanical solids with boundary structures. Int. J. Solids Struct. 47, 3245–3253 (2010)

    Article  MATH  Google Scholar 

  16. Johnson, W.C.: Superficial stress and strain at coherent interfaces. Acta Mater. 48, 433–444 (2000)

    Article  Google Scholar 

  17. Kaptay, G.: Classification and general derivation of interfacial forces, acting on phases, situated in the bulk, or at the interface of other phases. J. Mater Sci. 40, 2125–2131 (2005)

    Article  Google Scholar 

  18. Kramer, D., Weissmüller, J.: A note on surface stress and surface tension and their interrelation via Shuttleworth’s equation and the Lippmann equation. Surf. Sci. 601, 3042–3051 (2007)

    Article  Google Scholar 

  19. Leo, P.H., Sekerka, R.F.: The effect of surface stress on crystal-melt and crystal-crystal equilibrium. Acta Metall. 37, 3119–3138 (1989)

    Article  Google Scholar 

  20. Miehe, C.: Entropic thermoelasticity at finite strains. Aspects of the formulation and numerical implementation. Comp. Methods Appl. Mech. Eng. 120, 243–269 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139 (2000)

    Article  Google Scholar 

  22. Mitrushchenkov, A., Chambaud, G., Yvonnet, J., He, Q.C.: Towards an elastic model of wurtzite AlN nanowires. Nanotechnology 21, 255702 (2010)

    Article  Google Scholar 

  23. Müller, P., Saul, A.: Elastic effects on surface physics. Surf. Sci. Rep. 54, 157–258 (2004)

    Article  Google Scholar 

  24. Oden, J.T.: Finite Elements of Nonlinear Continua. Advanced Engineering Series. Mc Graw-Hill, New York (1972)

    MATH  Google Scholar 

  25. Olson, L., Kock, E.: A variational approach for modelling surface tension effects in inviscid fluids. Comput. Mech. 14(2), 140–153 (1994)

    Article  MATH  Google Scholar 

  26. Park, H.S., Klein, P.A.: Surface Cauchy-born analysis of surface stress effects on metallic nanowires. Phys. Rev. B 75, 1–9 (2007)

    Google Scholar 

  27. Park, H.S., Klein, P.A.: A surface Cauchy-born model for silicon nanostructures. Comp. Methods Appl. Mech. Eng. 197, 3249–3260 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Park, H.S., Klein, P.A., Wagner, G.J.: A surface Cauchy-born model for nanoscale materials. Int. J. Numer. Methods Eng. 68, 1072–1095 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rusanov, A.I.: Thermodynamics of solid surfaces. Surf. Sci. Rep. 23, 173–247 (1996)

    Article  Google Scholar 

  30. Saksono, P.H., Peric, D.: On finite element modelling of surface tension: variational formulation and applications - part II: dynamic problems. Comput. Mech. 38, 251–263 (2006)

    Article  MATH  Google Scholar 

  31. Sharma, P., Ganti, S., Bhate, N.: Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl. Phys. Lett. 82, 535–537 (2003)

    Article  Google Scholar 

  32. Shenoy, V.B.: Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys. Rev. B 71, 1–11 (2005)

    Google Scholar 

  33. Simha, N.K., Bhattacharya, K.: Kinetics of phase boundaries with edges and junctions. J. Mech. Phys. Solids 46, 2323–2359 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. Steinmann, P.: On boundary potential energies in deformational and configurational mechanics. J. Mech. Phys. Solids 56, 772–800 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Steinmann, P., Häsner, O.: On material interfaces in thermomechanical solids. Arch. Appl. Mech. 75, 31–41 (2005)

    Article  MATH  Google Scholar 

  36. Wang, B., She, H.: A geometrically nonlinear finite element model of nanomaterials with consideration of surface effect. Finite Elem. Anal. Des. 45, 463–467 (2009)

    Article  MathSciNet  Google Scholar 

  37. Wei, G., Shouwen, Y., Ganyun, H.: Finite element characterization of the size-dependent mechanical behaviour in nanosystems. Nanotechnology 17, 1118–1122 (2006)

    Article  Google Scholar 

  38. Yang, F.: Effect of interfacial stresses on the elastic behavior of nanocomposite materials. J. Appl. Phys. 99, 054306 (2006)

    Article  Google Scholar 

  39. Yun, G., Park, H.: A multiscale, finite deformation formulation for surface stress effects on the coupled thermomechanical behavior of nanomaterials. Comp. Methods Appl. Mech. Eng. 197, 3337–3350 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Yvonnet, J., Mitrushchenkov, A., Chambaud, G., He, Q.C.: Finite element model of ionic nanowires with size-dependent mechanical properties determined by ab initio calculations. Comp. Methods Appl. Mech. Eng. 200, 614–625 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Yvonnet, J., Quang, H.L., He, Q.C.: An XFEM level set approach to modelling surface/interface effects and computing the size-dependent effective properties of nanocomposites. Comput. Mater. Sci. 42, 119–131 (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Steinmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Steinmann, P., Javili, A. (2013). Computational Thermomechanics with Boundary Structures. In: Cocks, A., Wang, J. (eds) IUTAM Symposium on Surface Effects in the Mechanics of Nanomaterials and Heterostructures. IUTAM Bookseries (closed), vol 31. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4911-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4911-5_16

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4910-8

  • Online ISBN: 978-94-007-4911-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics