Skip to main content

Non-contact Linear Mechanism Based on Superconducting Levitation for Cryogenic Environment

  • Conference paper
  • First Online:
New Trends in Mechanism and Machine Science

Abstract

A non-contact linear mechanism based on stable superconducting magnetic levitation with a long permanent magnet as a slider and two fixed superconducting disks which define the slide way has been designed, built and tested. The slider can be moved stably along a stroke of 11.5mm by supplying a low current in the coils located at the end of the stroke. The levitation remains stable thanks to the superconductor disks providing a reliable mechanism for linear displacement in a cryogenic environment. The response is linear with a sensitivity of 522m/mA for displacements lower than 6mm. Pitch, yaw and roll have been measured demonstrating an overall good performance. Roll and yaw were always below 300rad, that is one order of magnitude lower than the pitch (4,500rad). A decrease of the pitch has been obtained by modifying some geometrical parameters of the mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ESA, European non-dependence on critical space technologies: EC-ESA-EDA list of urgent actions for 2009 (2009)

    Google Scholar 

  2. Devasia, S., Eleftheriou, E., Moheimani, S.O.R.: A survey of control issues in nanopositioning. IEEE Trans. Control Sys. Technol. 15, 802–823 (2007)

    Article  Google Scholar 

  3. Trautmann, A., Siviour, C.R., Walley, S.M., Field, J.E.: Lubrication of polycarbonate at cryogenic temperatures in the split Hopkinson pressure bar. Int. J. Impact Eng. 31, 523–544 (2005)

    Article  Google Scholar 

  4. Ostrovskaya, Y.L., Yukhno, T., Gamulya, G., Vvedenskij, Y.V., Kuleba, V.: Low temperature tribology at the B. Verkin Institute for Low Temperature Physics & Engineering (historical review). Tribol. Int.34, 265–276 (2001)

    Article  Google Scholar 

  5. Theiler, G., Gradt, T., Klein, P.: Friction and wear of PTFE composites at cryogenic temperatures. Tribol. Int. 35, 449–458 (2002)

    Article  Google Scholar 

  6. Fleischer, N., Genut, M., Rapoport, L., Tenne, R.: New nanotechnology solid lubricants for superior dry lubrication. In: Proceedings of the 10th European Space Mechanisms and Tribology Symposium, pp. 65–66 (2003)

    Google Scholar 

  7. APC International Ltd: Piezoelectric Ceramics: Principles and Applications. APC International, Ltd, Mackeyville (2002)

    Google Scholar 

  8. Yang, R., Jouaneh, M., Schweizer, R.: Design and characterization of a low-profile micropositioning stage. Precis. Eng. 18(1), 20–29 (1996)

    Article  Google Scholar 

  9. Liu, Y., Fung, R., Wang, C.: Precision position control using combined piezo-VCM actuators. Precis. Eng. 29(4), 411–422 (2005)

    Article  MathSciNet  Google Scholar 

  10. Högele, A., et al.: Fiber-based confocal microscope for cryogenic spectroscopy. Rev. Sci. Instrum. 79(2), 023709 (2008)

    Article  Google Scholar 

  11. Verma, S., Kim, W., Gu, J.: Six-axis nanopositioning device with precision magnetic levitation technology. IEEE/ASME Trans. Mechatron. 9(2), 384–391 (2004)

    Article  Google Scholar 

  12. Kim, W., Verma, S.: Design and precision construction of novel magnetic-levitation-based multi-axis nanoscale positioning systems. Precis. Eng. 31, 337–350 (2007)

    Article  Google Scholar 

  13. Zhang, Z., hsiang Menq, C.: Six-axis magnetic levitation and motion control. IEEE Trans. Robot. 23(2), 196–205 (2007)

    Article  Google Scholar 

  14. Dool, T.C.V.D., Kamphues, F., Gielesen, W.L.M., Braam B. C.: Magnetic bearing based cryo-mechanisms for future IR missions, Astro2010: The Astronomy and Astrophysics Decadal Survey. (2009)

    Google Scholar 

  15. Arkadiev, V.: A floating magnet. Nature 160(4062), 330 (1947)

    Article  Google Scholar 

  16. Moon, F.C., Chang, P.Z.: Superconducting Levitation. Applications to Bearings and Magnetic Transportation. Wiley-VCH, Berlin (1994)

    Google Scholar 

  17. Hull, J.R.: Superconducting bearings. Supercond. Sci. Technol. 13(2), R1–R15 (2000)

    Article  MathSciNet  Google Scholar 

  18. Iizuka, T., Fujita, H.: Precise positioning of a micro conveyor based on superconducting magnetic levitation. In: International Symposium on Micromechanotronics and Human Science, pp. 131–135 (1997)

    Google Scholar 

  19. Wu, M.K., et al.: Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Phys. Rev. Lett. 58(9), 908–910 (1987)

    Article  Google Scholar 

  20. Sanchez, A., Navau, C.: Vertical force, magnetic stiffness and damping for levitating type-II superconductors. Phys. C: Supercond. 268(1–2), 46–52 (1996)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partially funded by Dirección General de Economía, Estadística e Innovación Tecnológica, Consejería de Economía y Hacienda, Comunidad de Madrid, ref. 12/09.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose-Luis Perez-Diaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Perez-Diaz, JL. et al. (2013). Non-contact Linear Mechanism Based on Superconducting Levitation for Cryogenic Environment. In: Viadero, F., Ceccarelli, M. (eds) New Trends in Mechanism and Machine Science. Mechanisms and Machine Science, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4902-3_70

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4902-3_70

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4901-6

  • Online ISBN: 978-94-007-4902-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics