Advertisement

Dimensional Synthesis of Six-Bar Linkage as a Constrained RPR Chain

  • M. PlecnikEmail author
  • J. M. McCarthy
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 7)

Abstract

In this paper, five positions of a planar RPR serial chain are specified and the synthesis equations for two RR constraints are solved to obtain a six-bar linkage. Analysis of the resulting linkage determines if it moves the end-effector smoothly through the five task positions without a branch defect. The design procedure presented randomly selects variations to the positions of the RPR chain in order to obtain new six-bar linkages. This dimensional synthesis algorithm yields a set of six-bar linkages that move the end-effector near the original task positions. This synthesis procedure is applied to the design of a linkage that generates a square pattern. The procedure yielded 122 defect-free linkages for one million iterations.

Keywords

Linkage synthesis Six-bar linkage synthesis RPR chain Defect-free synthesis 

Notes

Acknowledgements

The authors acknowledge the support of the National Science Foundation and the assistance of the reviewers. Special thanks to Kevin Hung for executing the design of the screw insertion linkage.

References

  1. 1.
    Bagci, C., Burke, D.: Optimum synthesis of coupler curve and uniform rotary motion driven multiloop mechanisms generating complex output motions. J. Mech. Des. 115, 967–977 (1993)CrossRefGoogle Scholar
  2. 2.
    Bawab, S., Kinzel, G.L., Waldron, K.J.: Rectified synthesis of six-bar mechanisms with well-defined transmission angles for four-position motion generation. J. Mech. Des. 118, 377–384 (1996)CrossRefGoogle Scholar
  3. 3.
    Burmester, L.: Lehrbuch der Kinematik. Felix, Leipzig (1886)zbMATHGoogle Scholar
  4. 4.
    Gatti, G., Mundo, D.: Optimal synthesis of six-bar cammed-linkages for exact rigid-body guidance. Mech. Mach. Theory 42, 1069–1081 (2007)zbMATHCrossRefGoogle Scholar
  5. 5.
    Hartenberg, R.S., Denavit, J.: Kinematic Synthesis of Linkages. McGraw-Hill, New York (1964)Google Scholar
  6. 6.
    Kinzel, E.C., Schmiedeler, J.P., Pennock, G.R.: Function generation with finitely separated precision points using geometric constraint programming. J. Mech. Des. 129, 1185 (2007)CrossRefGoogle Scholar
  7. 7.
    McCarthy, J.M.: Geometric Design of Linkages. Springer, New York (2000)zbMATHGoogle Scholar
  8. 8.
    Mirth, J.A., Chase, T.R.: Circuit analysis of watt chain six-bar mechanisms. J. Mech. Des. 115, 214–223 (1993)CrossRefGoogle Scholar
  9. 9.
    Plecnik, M.M., McCarthy, J.M.: Five position synthesis of a slider-crank function generator. In: Proceedings of the 2011 International Design Engineering Technical Conferences DETC2011-47581, Washington, DC (2011)Google Scholar
  10. 10.
    Shiakolas, P.S., Koladiya, D., Kebrle, J.: On the optimum synthesis of six-bar linkages using differential evolution and the geometric centroid of precision positions technique. Mech. Mach. Theory 40, 319–335 (2005)zbMATHCrossRefGoogle Scholar
  11. 11.
    Soh, G.S., McCarthy, J.M.: The synthesis of six-bar linkages as constrained planar 3R chains. Mech. Mach. Theory 43, 160–170 (2008)zbMATHCrossRefGoogle Scholar
  12. 12.
    Ting, K., Xue, C., Wang, J., Currie, K.R.: Stretch rotation and complete mobility identification of Watt six-bar chains. Mech. Mach. Theory 44, 1877–1886 (2009)zbMATHCrossRefGoogle Scholar
  13. 13.
    Watanabe, K., Katoh, H.: Identification of motion domains of planar six-link mechanisms of the Stephenson-type. Mech. Mach. Theory 39, 1081–1099 (2004)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.University of CaliforniaIrvineUSA

Personalised recommendations