The Origin of Virions and Virocells: The Escape Hypothesis Revisited

  • Patrick ForterreEmail author
  • Mart Krupovic


Three types of hypotheses have been proposed to explain the origin of viruses: the “virus first” hypothesis in which viruses originated before cells, the “regression hypothesis”, in which cells or proto-cells evolved into virions by regressive evolution and the “escape hypothesis”, in which fragments of cellular genomes (either from prokaryotes or eukaryotes) became infectious. We will try to show how accumulating data in structural biology combined to new virus definitions allow rejecting the first two hypotheses, favouring a new version of the escape hypothesis. The first viruses probably originated in a world of cells already harbouring ribosomes (ribocells), but well before the Last Universal Common Ancestor of modern cells (LUCA). Several viral lineages originated independently by transformation of ribocells into virocells (cells producing virions). Viral genomes originated from ancestral chromosomes of ribocells and virions from micro-compartments, nucleoprotein complexes or membrane vesicles present in ancient ribocells. Notably, this updated version of the escape hypothesis suggests a working program to tackle the question of virus origin.


Viral Genome Hepatitis Delta Virus Viral Lineage Modern Cell dsDNA Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abrescia NG, Bamford DH, Grimes JM, Stuart DI (2012) Structure unifies the viral universe. Annu Rev Biochem 81:1–23CrossRefGoogle Scholar
  2. Baker ML, Jiang W, Rixon FJ, Chiu W (2005) Common ancestry of herpesviruses and tailed DNA bacteriophages. J Virol 79:14967–14970PubMedCrossRefGoogle Scholar
  3. Baltimore D (1971) Expression of animal virus genomes. Bacteriol Rev 35:235–241PubMedGoogle Scholar
  4. Bamford DH (2003) Do viruses form lineages across different domains of life? Res Microbiol 154:231–236PubMedCrossRefGoogle Scholar
  5. Bamford DH, Grimes JM, Stuart DI (2005) What does structure tell us about virus evolution? Curr Opin Struct Biol 15:655–663PubMedCrossRefGoogle Scholar
  6. Bandea CI (1983) A new theory on the origin and the nature of viruses. J Theor Biol 105:591–602PubMedCrossRefGoogle Scholar
  7. Bos L (1999) Beijerinck‘s work on tobacco mosaic virus: historical context and legacy. Philos Trans R Soc Lond B Biol Sci 354:675–685PubMedCrossRefGoogle Scholar
  8. Brüssow H (2009) The not so universal tree of life or the place of viruses in the living world. Philos Trans R Soc Lond B Biol Sci 364:2263–2274PubMedCrossRefGoogle Scholar
  9. Burroughs AM, Iyer LM, Aravind L (2007) Comparative genomics and evolutionary trajectories of viral ATP dependent DNA-packaging systems. Genome Dyn 3:48–65PubMedCrossRefGoogle Scholar
  10. Chen IA, Roberts RW, Szostak JW (2004) The emergence of competition between model protocells. Science 305:1474–1476PubMedCrossRefGoogle Scholar
  11. Cherwa JE, Fane BA (2011) Microviridae: microviruses and gokushoviruses. In: Encyclopedia of life sciences. Wiley, Chichester. doi: doi:10.1002/9780470015902.a0000781.pub2 Google Scholar
  12. Claverie JM (2006) Viruses take center stage in cellular evolution. Genome Biol 7:110PubMedCrossRefGoogle Scholar
  13. Colson P, de Lamballerie X, Fournous G, Raoult D (2012) Reclassification of giant viruses composing a fourth domain of life in the New order megavirales. Intervirology 55(5):321–332PubMedCrossRefGoogle Scholar
  14. Diemer GS, Stedman KM (2012) A novel virus genome discovered in an extreme environment suggests recombination between unrelated groups of RNA and DNA viruses. Biol Direct 7:13PubMedCrossRefGoogle Scholar
  15. Ellen AF, Albers SV, Huibers W, Pitcher A, Hobel CF, Schwarz H, Folea M, Schouten S, Boekema EJ, Poolman B, Driessen AJ (2009) Proteomic analysis of secreted membrane vesicles of archaeal sulfolobus species reveals the presence of endosome sorting complex components. Extremophiles 13:67–79PubMedCrossRefGoogle Scholar
  16. Filée J, Forterre P, Sen-Lin T, Laurent J (2002) Evolution of DNA polymerase families: evidences for multiple gene exchange between cellular and viral proteins. J Mol Evol 54:763–773PubMedCrossRefGoogle Scholar
  17. Flügel RM (2010) The precellular scenario of genovirions. Virus Genes 40:151–154PubMedCrossRefGoogle Scholar
  18. Forterre P (1992) New hypotheses about the origin of viruses, prokaryotes and eukaryotes. In: Trân Thanh Vân JK, Mounolou JC, Shneider J and Mc Kay C (eds) Frontiers of Life, éditions Frontières, Gif-sur-Yvette-France, pp 221–234. Accessible at
  19. Forterre P (2002) The origin of DNA genomes and DNA replication proteins. Curr Opin Microbiol 5:525–532PubMedCrossRefGoogle Scholar
  20. Forterre P (2005) The two ages of the RNA world, and the transition to the DNA world, a story of viruses and cells. Biochimie 87:93–803CrossRefGoogle Scholar
  21. Forterre P (2006) The origin of viruses and their possible roles in major evolutionary transitions. Virus Res 117:5–16PubMedCrossRefGoogle Scholar
  22. Forterre P (2010) Manipulation of cellular syntheses and the nature of viruses: the virocell concept. C R Chimi. doi: doi:10.1016/j.crci.2010.06.007
  23. Forterre P (2012) The virocell concept. In: eLS. John Wiley & Sons Ltd, Chichester. [doi: 10.1002/9780470015902.a0023264] Google Scholar
  24. Forterre P, Gadelle D (2009) Phylogenomics of DNA topoisomerases: their origin and putative roles in the emergence of modern organisms. Nucleic Acids Res 37:679–692PubMedCrossRefGoogle Scholar
  25. Forterre P, Gribaldo S (2007) The origin of modern terrestrial life. HFSP J 1:156–168PubMedCrossRefGoogle Scholar
  26. Forterre P, Krupovic M (2012) LUCA: its contemporaries and their viruses. In: Koonin EV (ed) LUCA. Springer-Verlag, Berlin GmbH, HeidelbergGoogle Scholar
  27. Forterre P, Prangishvili D (2009a) The origin of viruses. Res Microbiol 160:466–472PubMedCrossRefGoogle Scholar
  28. Forterre P, Prangishvili D (2009b) The great billion-year war between ribosome- and capsid-encoding organisms (cells and viruses) as the major source of evolutionary novelties. Ann N Y Acad Sci 1178:65–77PubMedCrossRefGoogle Scholar
  29. Gaudin M, Gauliard E, Le Normand P, Marguet E, Forterre P (2012) Hyperthermophilic archaea produce vesicles that can transfer DNA. Environ Microbiol Report. doi:10.1111/j.1758-2229.2012.00348.x Google Scholar
  30. Gould SJ (1996) Full house: the spread of excellence from plato to darwin. Three Rivers Press, New YorkCrossRefGoogle Scholar
  31. Goulet A, Blangy S, Redder P, Prangishvili D, Felisberto-Rodrigues C, Forterre P, Campanacci V, Cambillau C (2009) Acidianus filamentous virus 1 coat proteins display a helical fold spanning the filamentous archaeal viruses lineage. Proc Natl Acad Sci USA 106:21155–21160PubMedCrossRefGoogle Scholar
  32. Goulet A, Vestergaard G, Felisberto-Rodrigues C, Campanacci V, Garrett RA, Cambillau C, Ortiz-Lombardía M (2010) Getting the best out of long-wavelength X-rays: de novo chlorine/sulfur SAD phasing of a structural protein from ATV. Acta Crystallogr D Biol Crystallogr 66:304–308PubMedCrossRefGoogle Scholar
  33. Gyorgy B, Szabo TG, Pasztoi M, Pal Z, Misjak P, Aradi B et al (2011) Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci 68:2667–2688PubMedCrossRefGoogle Scholar
  34. Hendrix RW, Lawrence JG, Hatfull GF, Casjens S (2000) The origins and ongoing evolution of viruses. Trends Microbiol 8:504–508PubMedCrossRefGoogle Scholar
  35. Jalasvuori M, Bamford JK (2008) Structural co-evolution of viruses and cells in the primordial world. Orig Life Evol Biosph 38:165–181PubMedCrossRefGoogle Scholar
  36. Jeffares DC, Poole AM, Penny D (1998) Relics from the RNA world. J Mol Evol 46:18–36PubMedCrossRefGoogle Scholar
  37. Koonin EV (2009) On the origin of cells and viruses: primordial virus world scenario. Ann N Y Acad Sci 1178:47–64PubMedCrossRefGoogle Scholar
  38. Koonin EV, Martin W (2005) On the origin of genomes and cells within inorganic compartments. Trends Genet 21:647–654PubMedCrossRefGoogle Scholar
  39. Koonin EV, Senkevich TG, Dolja VV (2006) The ancient virus world and evolution of cells. Biol Direct 9:1–29CrossRefGoogle Scholar
  40. Kristensen DM, Mushegian AR, Dolja VV, Koonin EV (2010) New dimensions of the virus world discovered through metagenomics. Trends Microbiol 18:11–19PubMedCrossRefGoogle Scholar
  41. Krupovic M, Bamford DH (2010) Order to the viral universe. J Virol 84:12476–12479PubMedCrossRefGoogle Scholar
  42. Krupovic M, Bamford DH (2011) Double-stranded DNA viruses: 20 families and only five different architectural principles for virion assembly. Curr Opin Virol 1:118–124PubMedCrossRefGoogle Scholar
  43. Krupovic M, Ravantti J, Bamford DH (2009) Geminiviruses: a tale of a plasmid becoming a virus. BMC Evol Biol 9:112PubMedCrossRefGoogle Scholar
  44. Kulp A, Kuehn MJ (2010) Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu Rev Microbiol 64:163–184PubMedCrossRefGoogle Scholar
  45. La Scola B, Audic S, Robert C, Jungang L, de Lamballerie X, Drancourt M, Birtles R, Claverie JM, Raoult D (2003) A giant virus in amoebae. Science 299:2033Google Scholar
  46. Legendre M, Arslan D, Abergel C, Claverie JM (2012) Genomics of megavirus and the elusive fourth domain of life. Commun Integr Biol 5:102–106PubMedCrossRefGoogle Scholar
  47. Lukeš J, Archibald JM, Keeling PJ, Doolittle WF, Gray MW (2011) How a neutral evolutionary ratchet can build cellular complexity. IUBMB Life 63:528–537PubMedCrossRefGoogle Scholar
  48. Luria SE, Darnell JE (1967) General virology. Wiley, New YorkGoogle Scholar
  49. Lwoff A (1967) Principles of classification and nomenclature of viruses. Nature 215:13–14PubMedCrossRefGoogle Scholar
  50. Mansy SS, Szostak JW (2009) Reconstructing the emergence of cellular life through the synthesis of model protocells. Cold Spring Harb Symp Quant Biol 74:47–54PubMedCrossRefGoogle Scholar
  51. Meckes DG, Raab-Traub N (2011) Microvesicles and viral infection. J Virol 85:12844–12854PubMedCrossRefGoogle Scholar
  52. Moreira D, López-García P (2009) Ten reasons to exclude viruses from the tree of life. Nat Rev Microbiol 7:306–311PubMedGoogle Scholar
  53. Ogata H, Claverie JM (2007) Unique genes in giant viruses: regular substitution pattern and anomalously short size. Genome Res 17:1353–1361PubMedCrossRefGoogle Scholar
  54. Pietilä MK, Atanasova NS, Manole V, Liljeroos L, Butcher SJ, Oksanen HM, Bamford DH (2012) Virion architecture unifies globally distributed pleolipoviruses infecting halophilic archaea. J Virol 86:5067–5079PubMedCrossRefGoogle Scholar
  55. Poole AM, Logan DT (2005) Modern mRNA proofreading and repair: clues that the last universal common ancestor possessed an RNA genome? Mol Biol Evol 22:1444–1455PubMedCrossRefGoogle Scholar
  56. Prangishvili D, Krupovic M (2012) A new proposed taxon for double-stranded DNA viruses, the order “ligamenvirales”. Arch Virol 157:791–795PubMedCrossRefGoogle Scholar
  57. Prangishvili D, Forterre P, Garrett RA (2006) Viruses of the archaea: a unifying view. Nat Rev Microbiol 4:837–848PubMedCrossRefGoogle Scholar
  58. Raoult D, Forterre P (2008) Redefining viruses: lessons from mimivirus. Nat Rev Microbiol 6:315–319PubMedCrossRefGoogle Scholar
  59. Raoult D, Audic S, Robert C, Abergel C, Renesto P, Ogata H, La Scola B, Suzan M, Claverie JM (2004) The 1.2 megabase genome sequence of mimivirus. Science 306:1344–1350PubMedCrossRefGoogle Scholar
  60. Renesto P, Abergel C, Decloquement P, Moinier D, Azza S, Ogata H, Fourquet P, Gorvel JP, Claverie JM (2006) Mimivirus giant particles incorporate a large fraction of anonymous and unique gene products. J Virol 80:11678–11685PubMedCrossRefGoogle Scholar
  61. Rohwer F, Thurber RV (2009) Viruses manipulate the marine environment. Nature 459:207–212PubMedCrossRefGoogle Scholar
  62. Rohwer F, Youle M (2011) Consider something viral in your search. Nat Rev Microbiol 9:308–309CrossRefGoogle Scholar
  63. Roine E, Kukkaro P, Paulin L, Laurinavicius S, Domanska A, Somerharju P, Bamford DH (2010) New, closely related haloarchaeal viral elements with different nucleic acid types. J Virol 84:3682–3689PubMedCrossRefGoogle Scholar
  64. Ryan RF (2009) Virolution. Harper Collins, LondonGoogle Scholar
  65. Sapp J (2005) The prokaryote-eukaryote dichotomy: meanings and mythology. Microbiol Mol Biol Rev 69:292–305PubMedCrossRefGoogle Scholar
  66. Schrum JP, Zhu TF, Szostak JW (2010) In: Atkin JF, Gesteland RF, Cech TR (eds) The origin of cellular life: RNA worlds. Cold Spring Harbour Laboratory Press, New York, pp 51–62Google Scholar
  67. Soler N, Marguet E, Verbavatz JM, Forterre P (2008) Virus-like vesicles and extracellular DNA produced by hyperthermophilic archaea of the order thermococcales. Res Microbiol 159:390–399PubMedCrossRefGoogle Scholar
  68. Speir JA, Johnson JE (2012) Nucleic acid packaging in viruses. Curr Opin Struct Biol 22:65–71PubMedCrossRefGoogle Scholar
  69. Suttle C (2005) Crystal ball; the virosphere: the greatest biological diversity on earth and driver of global process. Environ Microbiol 7:481–482PubMedCrossRefGoogle Scholar
  70. Takeuchi N, Hogeweg P, Koonin EV (2011) On the origin of DNA genomes: evolution of the division of labor between template and catalyst in model replicator systems. PLoS Comput Biol 7(3):e1002024PubMedCrossRefGoogle Scholar
  71. Temin HM (1971) The protovirus hypothesis: speculations on the significance of RNA-directed DNA synthesis for normal development and for carcinogenesis. J Natl Cancer Inst 46(2):463–7Google Scholar
  72. Villarreal LP, Witzany G (2010) Viruses are essential agents within the roots and stem of the tree of life. J Theor Biol 262:698–710PubMedCrossRefGoogle Scholar
  73. Wadhwani P, Reichert J, Bürck J, Ulrich AS (2012) Antimicrobial and cell-penetrating peptides induce lipid vesicle fusion by folding and aggregation. Eur Biophys J 41:177–187PubMedCrossRefGoogle Scholar
  74. Yeates TO, Kerfeld CA, Heinhorst S, Cannon GC, Shively JM (2008) Protein-based organelles in bacteria: carboxysomes and related microcompartments. Nat Rev Microbiol 6:681–691PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Institut PasteurParisFrance
  2. 2.Institut de Génétique MicrobiologieUniv Paris-Sud, CNRS UMR8621Orsay, CedexFrance

Personalised recommendations